Apoptosis pp 31-45 | Cite as

Wild Type p53 Activity Contributes to Dependence on Hematopoietic Survival Factors

  • Eyal Gottlieb
  • Rebecca Haffner
  • Elisheva Yonish-Rouach
  • Thomas von Ruden
  • Erwin Wagner
  • Moshe Oren
Part of the Pezcoller Foundation Symposia book series (PFSO, volume 5)


The p53 protein is the product of a tumor suppressor gene, whose inactivation is most probably involved in the development of many types of cancer (for recent reviews on p53 see 1–6). In most cases, tumor cells harbor point mutations in the p53 gene, resulting in the overproduction of mutant forms of the protein. Whereas the wild-type (wt) form of p53 can exhibit a variety of anti-proliferative and tumor-inhibitory activities, mutants of the types found in cancer cells are typically devoid of such activities. Hence, the principal outcome of such mutations is probably the inactivation of the tumor suppressor function of wt p53. In addition, at least certain mutations may also confer a distinct gain of function7, thereby possibly contributing a novel oncogenic activity to the affected cell.


Survival Factor Murine Erythroleukemia Cell Mutant Conformation Haematopoetic Cell 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Levine, A. J., J. Momand, and C.A. Finlay. The p53 tumour suppressor gene. Nature 351: 453–456 (1991).PubMedCrossRefGoogle Scholar
  2. 2.
    Hollstein, M., D. Sidransky, B. Vogelstein and C.C. Harris. p53 mutations in human cancers. Science 253: 49–53 (1991).PubMedCrossRefGoogle Scholar
  3. 3.
    Oren, M. p53 — the ultimate tumor suppressor gene? FASEB J. 6, 3169–3176 (1992).PubMedGoogle Scholar
  4. 4.
    Vogelstein, B, and Kinzler, K.W. (1992). p53 function and dysfunction. Cell 70, 523–526.PubMedCrossRefGoogle Scholar
  5. 5.
    Mercer, W.E. Cell cycle regulation and the p53 tumor suppressor protein. Critical Rev. Eukaryotic Gene Expression, 2, 251–263 (1992).Google Scholar
  6. 6.
    Prives, C. and J.J. Manfredi. The p53 tumor suppressor protein: meeting review. Genes Dev. 7, 529–534 (1993).PubMedCrossRefGoogle Scholar
  7. 7.
    Michalovitz, D., O. Halevy, and M. Oren. p53 mutations: gains or losses? J. Cell. Biochem. 45:22–29 (1991).PubMedCrossRefGoogle Scholar
  8. 8.
    Seto, E., Usheva, A., Zambetti, G.P., Momand, J., Horikoshi, N., Weinmann, R., Levine, A.J., and Shenk, T. Wild-type p53 binds to the TATA-binding protein and represses transcription. Proc. Natl. Acad. Sci. USA, 849, 12028–12032 (1992).CrossRefGoogle Scholar
  9. 9.
    Ragimov, N., Krauskopf, A., Oren, M., and Aloni, Y. Wild type p53 can repress transcription initiation in vitro. Oncogene 8, 1183–1193 (1993).PubMedGoogle Scholar
  10. 10.
    Mack, D.H., J. Vartikar, J.M. Pipas, and L.A. Laimins. Specific repression of TATA-meidated but not initiator-mediated transcription by wt p53. Nature 363, 281–283 (1993).PubMedCrossRefGoogle Scholar
  11. 11.
    Agoff, S.N., Hou, J., Linzer, D.I.H., and Wu, B. Regulation of the human hsp70 promoter by p53. Science, 259, 84–87 (1993).PubMedCrossRefGoogle Scholar
  12. 12.
    Truant, R., Xiao, H., Ingles, C.J., and Greenblatt, J. Direct interaction between the transcriptional activation domain of human p53 and the TATA box-binding protein. J. Biol. Chem. 268, 2284–2287 (1993).PubMedGoogle Scholar
  13. 13.
    Tomey, J.D., and F.O. Cope (eds). Apoptosis: the molecular basis of cell death. Cold Spring Harbor Laboratory Press, Plainview, NY (1991).Google Scholar
  14. 14.
    Kuerbitz, S.J., B.S. Plunkett, V.W. Walsh, and M.B. Kastan. Wild type p53 is a cell cycle checkpoint determinant following irradiation. Proc. Natl. Acad. Sci. USA 89: 7491–7495 (1992).PubMedCrossRefGoogle Scholar
  15. 15.
    Lane, D.P. p53, guardian of the genome. Nature 358: 15–16 (1992).PubMedCrossRefGoogle Scholar
  16. 16.
    Kastan, M.B., Zhan, Q., El-Deiry, W.S., Carrier, F., Jacks, T., Walsh, W.V., Plunkett, B.S., Vogelstein, B., and Fornace, A.J. Cell 71, 587–597 (1992).PubMedCrossRefGoogle Scholar
  17. 17.
    Yonish-Rouach, E., D. Resnitzky, J. Lotem, L. Sachs, A. Kimchi, and M. Oren. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352:345–347 (1991).PubMedCrossRefGoogle Scholar
  18. 18.
    Michalovitz, D., O. Halevy, and M. Oren. Conditional inhibition of transformation and of cell proliferation by a temperature-sensitive mutant of p53. Cell 62:671–680 (1990).PubMedCrossRefGoogle Scholar
  19. 19.
    Ryan, J.J., R. Danish, C.A. Gottlieb, and M.F. Clarke. Cell cycle analysis of p53-induced cell death in murine erythroleukemia cells. Mol. Cell. Biol. 13, 711–719 (1993).PubMedGoogle Scholar
  20. 20.
    Johnson, P., S. Chung, and S. Benchimol. Growth suppression of Friend virus-transformed erythroleukemia cells by p53 protein is accompanied by hemoglobin production and is sensitive to erythropoietin. Mol. Cell. Biol. 13, 1456–1463 (1993).PubMedGoogle Scholar
  21. 21.
    Shaw, P., R. Bovey, S. Tardy, R. Sahli, B. Sordat, and BJ. Costa. Induction of apoptosis by wild type p53 in a human colon tumor-derived cell line. Proc. Natl. Acad. Sci. USA 89:4495–4499 (1992).PubMedCrossRefGoogle Scholar
  22. 22.
    Lowe, S.W., E.M. Schmitt, S.W. Smith, B.A. Osborne, and T. Jacks. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362, 847–849 (1993).PubMedCrossRefGoogle Scholar
  23. 23.
    Clarke, A.R., C.A. Purdie, D.J. Harrison, R.G. Morris, C.C. Bird, M.L. Hooper, and A.H. Wyllie. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362, 849–852 (1993).PubMedCrossRefGoogle Scholar
  24. 24.
    Debbas, M., and E. White. Wild type p53 mediates apoptosis by EIA, which is inhibited by EIB. Genes Dev. 7, 546–554 (1993).PubMedCrossRefGoogle Scholar
  25. 25.
    Lowe, S.W., and H.E. Ruley. Stabilization of the p53 tumor suppressor is induced by adenovirus 5 EIA and accompanies apoptosis. Genes Dev. 7, 535–545 (1993).PubMedCrossRefGoogle Scholar
  26. 26.
    Yonish-Rouach, E., Grunwald, D., Wilder, S., Kimchi, A., May, E., Lawrence, J.J., May, P., and Oren, M. p53-mediated cell death: relationship to cell cycle control. Mol. Cell. Biol. 13, 1415–1423 (1993).PubMedGoogle Scholar
  27. 27.
    Askew D.S., R.A. Ashmun, B.C. Simmons, and J.L. Cleveland. Constitutive c-myc expression in an IL-3-dependent myeloid cell line suppresses cell cycle arrest and accelerates apoptosis. Oncogene 6:1915–1922(1991).PubMedGoogle Scholar
  28. 28.
    Evan, G.E., A.H. Wyllie, C.S. Gilbert, T.D. Littlewood, H. Land, M. Brooks, C.M. Waters, L.Z. Penn, and D.C. Hancock. Induction of apoptosis in fibroblasts by c-myc protein. Cell 69, 119–128 (1992).PubMedCrossRefGoogle Scholar
  29. 29.
    Sachs, L. The control of growth and differentiation in normal and leukemic blood cells. Cancer 65: 2196–2206(1990).PubMedCrossRefGoogle Scholar
  30. 30.
    Resnitzky D., N. Tiefenbrun, H. Berissi, and A. Kimchi. Interferons and interleukin 6 suppress phosphoryrlation of the retinoblastoma protein in growth-sensitive hematopoietic cells. Proc. Natl. Acad. Sci. USA 89: 402–406 (1992).PubMedCrossRefGoogle Scholar
  31. 31.
    Shaulian, E., Zauberman, A., Ginsberg, D., and Oren, M. Identification of a minimal transforming domain of p53: negative dominance through abrogation of sequence-specific DNA binding. Mol. Cell. Biol. 12, 5581–5592 (1992).PubMedGoogle Scholar
  32. 32.
    Lotem J., and L. Sachs. Regulation by bcl-2, c-myc and p53 of susceptibility to induction of apoptosis by heat shock and cancer chemotherapy compounds in differentiation-competent and -defective myeloid leukemic cells. Cell Growth Diff. 4, 41–47 (1993).PubMedGoogle Scholar
  33. 33.
    Donehower, L.A., Harvey, M., Slagle, B.L., McArthur, M.J., Montgomery, C.A., Butel, J.S., and Bradley, A. p53-deficient mice are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Eyal Gottlieb
    • 1
  • Rebecca Haffner
    • 1
  • Elisheva Yonish-Rouach
    • 1
    • 2
  • Thomas von Ruden
    • 3
  • Erwin Wagner
    • 3
  • Moshe Oren
    • 1
  1. 1.Department of Chemical ImmunologyThe Weizmann Institute of ScienceRehovotIsrael
  2. 2.Institut de Recherches Scientifiques sur le CancerVillejuif CedexFrance
  3. 3.Research Institute of Molecular Pathology (IMP)ViennaAustria

Personalised recommendations