Apoptosis pp 213-222 | Cite as

MYC, FAS, Apoptosis, and Immune Tolerance

  • Douglas R. Green
  • Yufang Shi
  • Jaqueline Glynn
  • Artin Mahboubi
  • Rona J. Mogil
Part of the Pezcoller Foundation Symposia book series (PFSO, volume 5)


The problem of immunological tolerance, the apparent ability of the immune system to discriminate between self and “nonself” is almost as old as the field of immunology. Arguably, Ehrlich’s description of the phenomenon and the ensuing belief that it is a fundamental attribute of the immune system delayed the recognition of the existence of autoimmune disease until the 1950’s (1). However, once it was realized that the immune system could respond to self molecules, the idea that self/nonself discrimination was “learned” (and therefore potentially fallible) came into vogue. It is therefore likely that this recognition prompted the appearance of models of immune tolerance, and served as the impetus for the development of the clonal selection theory (2,3). The application of this theory to explain tolerance through the deletion of potentially autoreactive cells as proposed by Burnet (3,4) persist in almost unchanged form today.


Negative Selection Immune Tolerance Clonal Deletion Immature Thymocyte Clonal Selection Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.S. Schwarz and S.K. Datta. Autoimmunity and autoimmune diseases, in: “Fundamental Immunology, Second Edition,” W.E. Paul, ed., Raven Press Ltd, New York (1989).Google Scholar
  2. 2.
    N.K. Jerne, The natural-selection theory of antibody formation, Proc. Natl. Acad Sci. USA 41: 849 (1955).PubMedCrossRefGoogle Scholar
  3. 3.
    F.M. Burnet. A modification of Jerne’s theory of antibody production using the concept of clonal selection. Aust. J. Sci. 20: 67 (1957).Google Scholar
  4. 4.
    F.M. Burnet. “The Clonal Selection Theory of Aquired Immunity” Cambridge University Press, Cambridge (1959).Google Scholar
  5. 5.
    A. Herman, J. W. Kappler, P. Marrack, A. M. Pullen, Superantigens: Mechanism of T-cell stimulation and role in immune responses, Anna. Rev. Immunol. 9: 745 (1991).CrossRefGoogle Scholar
  6. 6.
    Kisielow, P., W. Swat, R. Rocha, H. v. Boehmer, Induction of immunological unresponsiveness in vivo and in vitro by conventional and super-antigens in developing and mature T cells, Immunol. Rev. 122: 69 (1992)CrossRefGoogle Scholar
  7. 7.
    S. Webb, C. Morris, and J. Sprent, Extrathymic tolerance of mature T cells: clonal elimination as a consequence of immunity, Cell 63, 1249 (1990)PubMedCrossRefGoogle Scholar
  8. 8.
    L.A. Jones, L.T. Chin, D.L. Longo, and A.M. Kruisbeek, Peripheral clonal elimination of functional T cell, Scienee 250, 1726 (1990).CrossRefGoogle Scholar
  9. 9.
    Y. Kawabe, and A. Ochi, Programmed cell death and extrathymic reduction of Vβ8+ CD4+ T cells in mice tolerant to Satphylococcus aureus enterotoxin B, Nature 349, 245–248(1991).Google Scholar
  10. 10.
    C.A. Smith, CA G.T. Williams, R. Kingston, E.J. Jenkinson, and J.T.T. Owen, Antibodies to CD3/T-cell receptor complex induce death by apoptosis in immature T cells in thymic organ cultures, Nature 337: 181 (1989).PubMedCrossRefGoogle Scholar
  11. 11.
    Y. Shi, B.M. Sahai, and D.R. Green, Cyclosporin A inhibits activation-induced cell death in T cell hybridomas and in thymocytes, Nature, 339: 625 (1989).PubMedCrossRefGoogle Scholar
  12. 12.
    Y. Shi, R.P. Bissonnette, N. Parfrey, M. Szalay, R.T. Kubo, and D.R. Green, In vivo administration of antibodies to the CD3-T cell receptor complex induces cell death (apoptosis) in immature thymocytes. J. Immunol. 146: 3340 (1991).PubMedGoogle Scholar
  13. 13.
    K.M. Murphy, A.B. Heimberger, and D.Y. Loh, Induction by antigen of intrathymic apoptosis of CD4+CD8+TCRlo thymocytes in vivo, Science 250: 1720 (1990).PubMedCrossRefGoogle Scholar
  14. 14.
    Y. Takahama, E.W. Shores, EW, and A. Singer, Negative selection of precursor thymocytes before their differentiation into CD4+CD8+ cells, Science 258: 653 (1992).PubMedCrossRefGoogle Scholar
  15. 15.
    C.J. Guidos, J.S. Danska, C.G. Fathman, and I.L. Weissman, T cell receptor-mediated negative selection of autoreactive T lymphocyte precursors occurs after commitment to the CD4 or CD8 lineages, J. Exp. Med. 172: 835 (1990).PubMedCrossRefGoogle Scholar
  16. 16.
    Y. Shi, M.G. Szalay, L. Paskar, M. Boyer, B. Singh, and D.R. Green, Activation-induced cell death in T cell hybridomas is due to apoptosis: Morphological aspects and DNA fragmentation, J. Immunol 144: 3326 (1990).PubMedGoogle Scholar
  17. 17.
    D.S. Ucker, J.D. Ashwell, and G. Nickas, Activation-driven T cell death. I Requirements for de novo transcription and translation and association with genome fragmentation, J. Immunol. 143:3461 (1989).PubMedGoogle Scholar
  18. 18.
    C. Odaka, H. Kizaki, and T. Tadakuma, T cell receptor-mediated DNA fragmentation and cell death in T cell hybridomas, J. Immunol. 144: 2096 (1990).PubMedGoogle Scholar
  19. 19.
    R. Heikkila, G. Schwab, E. Wickstrom, S. L. Loke, D. H. Pluznik, R. Watt, and L. M. Neckers, A c-myc antisense oligodeoxynucleotide inhibits entry into S phase but not progress from G0 to G1, Nature 328: 445 (1987).PubMedCrossRefGoogle Scholar
  20. 20.
    A. Harel-Bellan, D.K. Ferris, M. Vinocour, J.T. Holt, W.L. Farrar, Specific inhibition of c-myc protein biosynthesis using an antisense synthetic deoxy-oligonucleotide in human T lymphocytes, J. Immunol., 140: 2431 (1988)PubMedGoogle Scholar
  21. 21.
    Y. Shi, R. P. Bissonnette, J. M. Glynn, L. J. Guilbert, T. G. Cotter, and D. R. Green, Inhibition of activation-induced apoptosis in T cells by antisense oligodeoxynucleotides corresponding to c-myc. Science 257, 212–214 (1992).Google Scholar
  22. 22.
    J.S. Riegel, E.R. Richie, and J.P. Allison, Nuclear events after activation of CD4+CD8+ thymocytes, J. Immunol 144: 3611 (1990).PubMedGoogle Scholar
  23. 23.
    J. Nikolic-Zugic, G. Stella, and S. Andjelic, Reciprocal expression of bcl-2 and c-myc defines susceptibility of immature thymocytes to Ca++-induced apoptosis, J. Immunol 150: 152A (1993).Google Scholar
  24. 24.
    M. Mercep, P.D. Noguchi, and J.D. Ashwell, The cell cycle block and lysis of an activated T cell hybridoma are distinct processes with different Ca2+ requirements and sensitivity to cyclosporine A, J Immunol 142:4085 (1989).PubMedGoogle Scholar
  25. 25.
    G.I. Evan, A. H. Wyllie, C. S. Gilbert, T. D. Littlewood, H. Land, M. Brooks, C. M. Waters, L. Z. Penn, and D. C. Hancock. Induction of apoptosis in fibroblasts by c-myc protein, Cell 69: 119–128 (1992).PubMedCrossRefGoogle Scholar
  26. 26.
    R.P. Bissonnette, Y. Shi, A. Mahboubi, J.M. Glynn, and D.R. Green, c-Myc and apoptosis, in: “Apoptosis, The Molecular Basis of Cell Death, Volume 2,” L.D. Tomei and F.O. Cope, eds., Cold Spring Harbor Lab. Press, Cold Spring Harbor, in press.Google Scholar
  27. 27.
    D.S. Askew, R. A. Ashmun, B. C. Simmons, and J. L. Cleveland. Constitutive c-myc expression in an IL-3-dependent myeloid cell line suppresses cycle arrest and accelerates apoptosis, Oncogene 6: 1915 (1991).PubMedGoogle Scholar
  28. 28.
    R.P. Bissonnette, F. Echeverri, A. Mahboubi, and D.R. Green, Apoptotic cell death induced by c-myc is inhibited by bcl-2, Nature 359: 552 (1992).PubMedCrossRefGoogle Scholar
  29. 29.
    A. Fanidi, E.A. Harrington, and G.I. Evan, Cooperative interaction between c-myc and bcl-2 proto-oncogenes, Nature 359: 554 (1992).PubMedCrossRefGoogle Scholar
  30. 30.
    J. A. Pietenpol, J.T. Holt, R.W. Stein, and H.L. Moses, Transforming growth factor β1 suppression of c-myc gene transcription: Role in inhibition of keratinocyte proliferation, Proc. Natl. Acad. Sci. USA 87: 3758 (1990).PubMedCrossRefGoogle Scholar
  31. 31.
    W. Bursch, F. Oberhammer, R.L. Jirtle, M. Askari M. et al., Transforming growth factor-beta 1 as a signal for induction of cell death by apoptosis, Br J Cancer 67:531–6(1993)PubMedCrossRefGoogle Scholar
  32. 32.
    S. Yonehara, A. Ishii, M. Yonehara, A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor for tumor necrosis factor, J.ExpMed. 169: 1747 (1989).CrossRefGoogle Scholar
  33. 33.
    B.C. Trauth, C. Klas, A.M.J. Peters, S. Matzku, P. Moller, W. Falk, K.M. Debatin, and P.H. Krammer, Monoclonal antibody-mediated tumor regression by induction of apoptosis, Science 245: 301 (1989).PubMedCrossRefGoogle Scholar
  34. 34.
    T. Miyawaki, T. Uehara, R. Nibu, T. Tsuji, A. Tachie, S. Yonehara, and N. Taniguchi, Differential expression of apoptosis-related Fas antigen on lymphocyte subpopulations in human peripheral blood, J. Immunol 149: 3753 (1992).PubMedGoogle Scholar
  35. 35.
    Cohen, P.L., and R.A. Eisenberg, The lpr and gld genes in systemic autoimmunity: life and death in the Fas lane, Immunol Today 13, 427–428 (1992).PubMedCrossRefGoogle Scholar
  36. 36.
    Watanabe-Fukunaga, R., C. I. Brannan, N. G. Copeland, N. A. Jenkins, and S. Nagata, Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis, Nature 356: 314 (1992).PubMedCrossRefGoogle Scholar
  37. 37.
    P.A. Singer, R.S. Balderas, R.J. McEvilly, M. Bobardt, and A.N. Theophilopoulos, Tolerance-related V beta clonal deletions in normal CD4-8-, TCR-alpha/beta+ and abnormal lpr and gld cell populations, J. Exp. Med. 170: 1869 (1989).PubMedCrossRefGoogle Scholar
  38. 38.
    C.L. Sidman, J.D. Marshall, and H. von Boehmer, Transgenic T cell receptor interactions in the lymphoproliferative and autoimmune syndromes of lpr and gld mutant mice, Eur. J. Immunol. 22: 499 (1992).PubMedCrossRefGoogle Scholar
  39. 39.
    T. Zhou, H. Bluethmann, J. Zhang, C.K. Edwards, and J.D. Mountz, Defective maintenance of T cell tolerance to a superantigen in MRL-lpr/lpr mice, J. Exp. Med. 176, 1063–1072(1992).Google Scholar
  40. 40.
    E.J. Jenkinson, R. Kingston, C.A. Smith, G.T. Williams, and J.T.T. Owen, Antigen-induced apoptosis in developing T cells: a mechanism for negative selection of the T cell receptor repertoire, Eur. J. Immunol. 19, 2175–2177 (1989).PubMedCrossRefGoogle Scholar
  41. 41.
    T. Giese, and W.F. Davidson, Evidence for early onset, polyclonal activation of T cell subsets in mice homozygous for lpr, J. Immunol. 149:3097–3106 (1992).PubMedGoogle Scholar
  42. 42.
    Mountz JD; Edwards CK, Murine models of autoimmunity: T-cell and B-cell defects, Curr Opin Rheumatol 4:612 (1992).PubMedGoogle Scholar
  43. 43.
    P.A. Singer, and A.N. Theofilopoulos, T-cell receptor Vβ repertoire expression in murine models of SLE, Immunol Rev. 118: 103–127 (1990).PubMedCrossRefGoogle Scholar
  44. 44.
    Jenkins MK, The role of cell division in the induction of clonal anergy, Immunol Today 13:69 (1992).PubMedCrossRefGoogle Scholar
  45. 45.
    T.R. Mosmann and R.L. Coffman, TH1 and TH2 cells: Different patterns of lymphokine secretion lead to different functional properties, Annu. Rev. Immunol. 7: 145 (1989).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Douglas R. Green
    • 1
  • Yufang Shi
    • 1
  • Jaqueline Glynn
    • 1
  • Artin Mahboubi
    • 1
  • Rona J. Mogil
    • 1
  1. 1.La Jolla Institute for Allergy and ImmunologyLa JollaUSA

Personalised recommendations