Skip to main content

Update on Therapy of Influenza and Rhinovirus Infections

  • Chapter
Book cover Antiviral Chemotherapy 4

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 394))

Abstract

This review will summarize recent developments made in the area of antiviral chemotherapy of rhinovirus and influenza virus infections. It will update previous reviews of this topic1–3 and specifically focus on agents that have been of clinical investigative interest since the previous Symposium three years ago. The only newly approved drug for respiratory viral infections is the anti-influenza agent rimantadine (Flumadine), which has been under study for several decades in the United States. In the USA it was approved in 1993 for prevention of influenza A virus infections in children and adults and for treatment of uncomplicated disease in adults.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hayden FG. Use of interferons for prevention and treatment of respiratory viral infections. In: Antiviral Chemotherapy, New Directions for Clinical Application and Research, Mills J and Corey L (eds), Elsevier, New York, NY, 1986, pp 28–39.

    Google Scholar 

  2. Hayden FG. Update on antiviral chemotherapy of respiratory viral infection. In Antiviral Chemotherapy, New Directions for Clinical Application and Research, Vol 2, Mills J and Corey L (eds.), Elsevier, New York, NY, 1989, pp 117–42.

    Google Scholar 

  3. Hayden FG. Update on treatment of respiratory viral infections. In: Antiviral Chemotherapy, New Directions for Clinical Application and Research, Vol 3, Mills J and Corey L (eds.), PTR Prentice-Hall, Englewood Cliffs, N1, 1993, pp 207–28.

    Google Scholar 

  4. Tominack RL, Hayden FG. In: Infectious Disease Clinics of North America, Rimantadine hydrochloride and amantadine hydrochloride use in influenza A virus infections, Moellering RC, ed., W.B. Saunders, Philadelphia, 1987, pp 459–78.

    Google Scholar 

  5. Douglas RG, Jr. Drug therapy. Prophylaxis and treatment of influenza. N Engl J Med 1990; 322: 443–50.

    Article  PubMed  Google Scholar 

  6. Peters NL, Oboler S, Hair C, et al. Treatment of an influenza A outbreak in a teaching nursing home. J Am Geriatr Soc 1989; 37: 210–18.

    PubMed  CAS  Google Scholar 

  7. Degelau J, Somani S, Cooper SL, et al. Occurrence of adverse effects and high amantadine concentrations with influenza prophylaxis in the nursing home. J Am Geriatr Soc 1990; 38: 428–32.

    PubMed  CAS  Google Scholar 

  8. Stange KC, Little DW, Blatnik B. Adverse reactions to amantadine prophylaxis of influenza in a retirement home. J Am Geriatr Soc 1991; 33: 700–5.

    Google Scholar 

  9. Brady MT, Sears SD, Pacini DL, et al. Safety and prophylactic efficacy of low-dose rimantadine in adults during an influenza A epidemic. Antimicrob Agents Chemother 1990; 34: 1633–36.

    Article  PubMed  CAS  Google Scholar 

  10. Hay M. The action of adamantanamines against influenza A viruses: inhibition of the M2 ion channel protein. Seminars in Virology 1992; 3: 21–30.

    CAS  Google Scholar 

  11. Duff KC, Gilchrist PJ, Saxena AM, et al. Neutron diffraction reveals the site of amantadine blockade in the influenza A M2 ion channel. Virology 1994; 202: 287–93.

    Article  PubMed  CAS  Google Scholar 

  12. Hayden FG, Couch RB. Clinical and epidemiological importance of influenza A viruses resistant to amantadine and rimantadine. Rev Med Virol 1992; 2: 89–96.

    Article  Google Scholar 

  13. Hayden FG. Amantadine and rimantadine resistance in influenza A viruses. Current Opinion in Infectious Diseases 1994; 7: 674–77.

    Article  Google Scholar 

  14. Degelau J, Somani SK, Cooper SL, et al. Amantadine-resistant influenza A in a nursing facility. Arch Intern Med 1992; 152: 390–92.

    Article  PubMed  CAS  Google Scholar 

  15. Palese P, Compans RW. Inhibition of influenza virus replication in tissue culture by 2-deoxy-2,3dehydro-N-trifluoroacetylneuraminic acid (FANA): mechanism of action. J Gen Virol 1976; 33: 159–63.

    Article  PubMed  CAS  Google Scholar 

  16. Burnet FM, McCrea, Anderson SG, Mucin as a substrate of enzyme action by viruses of the mumps influenza group. Nature (London) 1947; 160: 404–5.

    Article  CAS  Google Scholar 

  17. Shengqiang LI, Schulman J, Itamura S, et al. Glycosylation of neuraminidase determines the neurovirulence of influenza A/WSN/33 virus. J Virol 1993; 67: 6667–73.

    Google Scholar 

  18. Liu C, Air GM. Selection and characterization of a neuraminidase-minus mutant of influenza virus and its rescue by cloned neuraminidase genes. Virology 1993; 194: 403–7.

    Article  PubMed  CAS  Google Scholar 

  19. Colman PM, Varghese JN, Laver WG. Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature 1983; 303: 41–4.

    Article  PubMed  CAS  Google Scholar 

  20. Varghese IN, McKimm-Breschkin JL, Caldwell JB, et al. The structure of the complex between influenza virus neuraminidase and sialic acid, the viral receptor. Proteins: Structure, Function, and Genetics 1992; 14: 327–32.

    Article  CAS  Google Scholar 

  21. Murphy BR, Kasel JA, Chanock RM. Association of serum anti-neuraminidase antibody with resistance to influenza in man. JAMA 1972; 286: 1329–32.

    CAS  Google Scholar 

  22. Monto AS, Kendal AP. Effect of neuraminidase antibody of Hong Kong influenza. Lancet 1973; 623–25.

    Google Scholar 

  23. Couch RB, Kasel JA, Gerin JL, et al. Induction of partial immunity to influenza by a neuraminidasespecific vaccine. J Infect Dis 1974; 129: 411–20.

    Article  PubMed  CAS  Google Scholar 

  24. Beutner KR, Chow T, Rubi E, et al. Evaluation of a neuraminidase-specific influenza A virus vaccine in children: antibody responses and effects on two successive outbreaks of natural infection. J Infect Dis 1979; 140: 844–50.

    Article  PubMed  CAS  Google Scholar 

  25. Webster RG, Reay PA, Laver WG. Protection against lethal influenza with neuraminidase. Virology 1988; 164: 230–7.

    Article  PubMed  CAS  Google Scholar 

  26. Meindl P, Bodo G, Palese P, et al. Inhibition of neuraminidase activity by derivatives of 2-deoxy-2,3dehydro-N-acetylneuraminic acid (FANA). Virology 1974; 58: 457–63.

    Article  PubMed  CAS  Google Scholar 

  27. Palese P, Schulman JL. Inhibition of influenza and parainfluenza virus replication in tissue culture by 2deoxy-2, 3-dehydro-N-trifluoroacetylneuraminic acid (FANA). Virology 1974; 59: 490–98.

    CAS  Google Scholar 

  28. von Itzstein M, Wu WY, Kok GB, et al. Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 1993; 363: 418–23.

    Article  Google Scholar 

  29. Ryan DM, Ticehurst J, MH Dempsey, et al. Inhibition of influenza virus replication in mice by GG167 (4-guanidino-2,4-dideoxy-2,3-dehydro-N-acetylneuraminic acid) is consistent with extracellular activity of viral neuraminidase (sialidase). Antimicrob Agents Chemother 1994; 38: 2270–75.

    Article  PubMed  CAS  Google Scholar 

  30. Pegg MS, von Itzstein M. Slow-binding inhibition of sialidase from influenza virus. Biochemistry Molecular Biology International 1994; 32: 851–8.

    CAS  Google Scholar 

  31. Woods JM, Bethell RC, Coates JAV, et al. 4-guanidine-2,4-dideoxy-2,3-dehydro-N-acetylneuraminic acid is a highly effective inhibitor both of the sialidase (neuraminidase) and of growth of a wide range of influenza A and B viruses in vitro. Antimicrob Agents Chemother 1993; 37: 1473–79.

    Article  PubMed  CAS  Google Scholar 

  32. Hayden FG, Rollins BS, Madren LK. Anti-influenza virus activity of the neuraminidase inhibitor 4guanidino-Neu5Ac2en in cell culture and in human respiratory epithelium. Antiviral Res 1994; 25: 123–31.

    Article  PubMed  CAS  Google Scholar 

  33. Holzer CT, von Itzstein M, Jin B, et al. Inhibition of sialidases from viral, bacterial and mammalian sources by analogues of 2-deoxy-2,3-didehydro-N-acetylneuraminic acid modified at the C-4 position. Glycoconjugate Journal 1993; 10: 40–44.

    Article  PubMed  CAS  Google Scholar 

  34. Thomas GP, Forsyth M, Penn CR, et al. Inhibition of the growth of influenza viruses in vitro by 4guanidino-2,4-dideoxy-N-acetylneuraminic acid. Antiviral Res 1994; 24: 351–56.

    Article  PubMed  CAS  Google Scholar 

  35. Efthymiopoulos C, Barrington P, Patel J, et al. Pharmacokinetics of the neuraminidase inhibitor 4guanidino Neu5Ac2en (GG167) following intravenous, intranasal and inhaled administration in man. Program and Abstracts of 34th ICAAC, pp 265, Ameri Soc Microbiol, Orlando, FL, October 4–7, 1994 [abst. H70].

    Google Scholar 

  36. Hayden F, Lobo M, Esinhart J, et al. Efficacy of 4-guanidino Neu5Ac2en in experimental human influenza A virus infection. Program and Abstracts of 34th ICAAC, pp 190, Amen Soc Microbiol, Orlando, FL, October 4–7, 1994 [abst. H35].

    Google Scholar 

  37. Colacino JM, DeLong DC, Nelson JR, et al. Evaluation of the anti-influenza virus activities of 1,3,4thiadiazol-2-ylcyanamide (LY217896) and its sodium salt. Antimicrob Agents Chemother 1990; 34: 2156–63.

    Article  PubMed  CAS  Google Scholar 

  38. Hayden FG, Tunkel AR, Treanor JJ, et al. Oral LY217896 for prevention of experimental influenza A virus infection and illness in humans. Antimicrob Agents Chemother 1994; 38: 1178–81.

    Article  PubMed  CAS  Google Scholar 

  39. Hayden FG, Rollins BS, Hay AJ. Anti-influenza virus activity of the compound LY253963. Antiviral Res 1990; 14: 25–38.

    Article  PubMed  CAS  Google Scholar 

  40. Colacino JM, Birch GM, Tang JC. Cellular metabolism and anti-influenza activity of 1,3,4-thiadiazol-2ylcyanamide (LY217896). Antiviral Chemistry Chemotherapy 1993; 4: 271–80.

    CAS  Google Scholar 

  41. Tisdale M, Appleyard G, Tuttle JV, et al. Inhibition of influenza A and B viruses by 2’-deoxy-2’fluororibosides. Antiviral Chemistry Chemotherapy 1993; 4: 281–7.

    CAS  Google Scholar 

  42. Rollins BS, Elkhatieb ARA, Hayden FG. Comparative anti-influenza virus activity of 2’-deoxy-2’fluororibosides in vitro. Antiviral Res 1993; 21: 357–68.

    Article  PubMed  CAS  Google Scholar 

  43. Jakeman KJ, Tisdale M, Russell S. Efficacy of 2’-deoxy-2’-fluororibosides against influenza A and B viruses in ferrets. Antimicrob Agents Chemother 1994; 38: 1864–67.

    Article  PubMed  CAS  Google Scholar 

  44. Nagai T, Miyaichi Y, Tomimori T, et al. In vivo anti-influenza virus activity of plant flavonoids possessing inhibitory activity for influenza virus sialidase. Antiviral Res 1992; 19: 207–17.

    Article  PubMed  CAS  Google Scholar 

  45. Zhirnov OP. High protection of animals lethally infected with influenza virus by aprotinin-rimantadine combination. J Med Virol 1987; 21: 161–67.

    Article  PubMed  CAS  Google Scholar 

  46. Ovcharenko AV, Zhirnov OP. Aprotinin aerosol treatment of influenza and paramyxovirus bronchopneumonia of mice. Antiviral Res 1994; 23: 107–18.

    Article  PubMed  CAS  Google Scholar 

  47. Gilbert BE, Wyde PR, Wilson SZ, et al. SP-303 small-particle aerosol treatment of influenza A virus infection in nuce and respiratory syncytial virus infection in cotton rats. Antiviral Res 1993; 21: 37–45.

    Article  PubMed  CAS  Google Scholar 

  48. Sidwell RW, Huffman JH, Moscon BJ, et al. Influenza virus-inhibitor effects of intraperitoneally and aerosol-administered SP-303, a plant flavonoid. Chemotherapy 1994; 40: 42–50.

    Article  PubMed  CAS  Google Scholar 

  49. Yamada Y, Shimokata K, Yamada Y, et al. Inhibition of influenza A virus replication by a kanamycin derivative. Antiviral Res 1991; 15: 171–82.

    Article  PubMed  CAS  Google Scholar 

  50. Sperber SJ, Hayden FG. Perspectives in the use of antiviral agents for prevention and treatment of respiratory virus infections. Clinical Use of Antiviral Drugs. (E De Clercq, ed.) 1988, Martinus Nijhoff Publishing, Boston, pp 317–40.

    Google Scholar 

  51. Sperber SI, Hayden FG. Chemotherapy of rhinovirus colds. Antimicrob. Agents Chemother 1988; 32: 409–419.

    Article  PubMed  CAS  Google Scholar 

  52. Arruda E, Hayden FG. Clinical studies of antiviral agents for picornaviral infections. Antiviral Chemotherapy. (DJ Jeffries and E DeClercq. ed.) 1995, John Wiley and Sons. New York, NY (in press).

    Google Scholar 

  53. Al-Nakib W, Higgins PG, Barrow GI, et al. Suppression of colds in human volunteers challenged with rhinovirus by a new synthetic drug (R61837). Antimicrob Agents Chemother 1989; 33: 522–25.

    Article  PubMed  CAS  Google Scholar 

  54. Barrow GI, Higgins PG, Tyrrell DAJ, et al. An appraisal of the efficacy of the antiviral R 61837 in rhinovirus infections in human volunteers. Antiviral Chem Chemother 1990; 1. 279–83.

    CAS  Google Scholar 

  55. Hayden FG. Andries K, Janssen PAJ. Safety and efficacy of intranasal pirodavir (R77975) in experimental rhinovirus infection. Antimicrob Agents Chemother 1992;36:727–732.

    Google Scholar 

  56. Sperber Si, Doyle WJ, McBride TP. et al. Otologic effects of interferon of interferon beta serine in experimental rhinovirus colds. Arch Otolaryngol Head Neck Surg 1992: 118: 933–936.

    Google Scholar 

  57. Tyrrell D. Barrow I, Arthur J. Local hyperthermia benefits natural and experimental common colds. BMJ 1989: 298: 1280–83.

    Article  PubMed  Google Scholar 

  58. Hcndley JO, Abbott RD, Beasley PP, et al. Effect of inhalation of hot humidified air on experimental rhinovirus infection. JAMA 1994, 271: 1112–1113.

    Article  Google Scholar 

  59. Hayden FG, Hipskind GJ, Janssens M, Janssen PAJ. Andries K. Intranasal pirodavir (R77,975) treatment of rhinovirus colds. Antimicrob Agents Chemother 199539: 290–294.

    Google Scholar 

  60. Ophir D, Elad Y. Effects of steam inhalation on nasal patency and nasal symptoms in patients with the common cold. Am J Otolaryngol 1987; 3: 149–153.

    Article  Google Scholar 

  61. MacKinin ML, Mathew S, Medendorp SV. Effects of inhaling heated vapor on symptoms of the common cold. JAMA 1990; 264: 989–91.

    Article  Google Scholar 

  62. Forstall GJ, Macknin ML, Yen-Lieberman BR, et al. Effect of inhaling heated vapor on symptoms of the common cold. JAMA 1994; 271: 1109–1111.

    Article  PubMed  CAS  Google Scholar 

  63. Andries K, Dewindt B, Snoeks J, et al. In vitro activity of pirodavir (R 77975), a substituted phenoxypyridazinamine with broad-spectrum antipicornaviral activity. Antimicrob Agents Chemother 1992; 36: 100–107.

    Article  PubMed  CAS  Google Scholar 

  64. Diana GD, Otto MJ, McKinlay MA. Inhibitors of picornavirus uncoating as antiviral agents. Pharmac Ther 1985; 29: 287–297.

    Article  CAS  Google Scholar 

  65. Dewindt BK, van Eemeren K, Andries K. Anti-viral capsid-binding compounds can inhibit the adsorption of minor receptor rhinoviruses. Antiviral Res 1994; 25: 67–72.

    Article  PubMed  CAS  Google Scholar 

  66. Pevear DC, Fancher MJ, Fellock PJ, et al. Conformational change in the floor of the human rhinovirus canyon blocks absorption to HeLa cell receptors. J Virol 1989; 63: 2002–2007.

    PubMed  CAS  Google Scholar 

  67. Shepard DA, Heinz BA, Rueckert RR. WIN 52035–2 inhibits both attachment and eclipse of human rhinovirus 14. J Virol 1993; 67: 2245–2254.

    PubMed  CAS  Google Scholar 

  68. Crump CE, Arruda E, Hayden FG. In vitro inhibitory activity of soluble ICAM-1 for the numbered serotypes of human rhinovirus. Antiviral Chemistry Chemotherapy 1993; 4: 323–327.

    CAS  Google Scholar 

  69. Andries K, Dewindt B, Snoeks J, et al. Two groups of rhinoviruses revealed by a panel of antiviral compounds present sequence divergence and differential pathogenicity. J Virol 1990; 64: 1117–1123.

    PubMed  CAS  Google Scholar 

  70. Diana GD, Pevear DC, Otto MJ, et al. Inhibitors of viral uncoating. Pharmac Ther 1989; 42: 289–305.

    Article  CAS  Google Scholar 

  71. Andries K, Dewindt B, De Brabander M, et al. In vitro activity of R 61837, a new antirhinovirus compound. Arch Virol 1988; 101: 155–167.

    Article  PubMed  CAS  Google Scholar 

  72. Dearden C, Al-Nakib W, Andries K, et al. Drug resistant rhinoviruses from the nose of experimentally treated volunteers. Arch Virol 1989; 109: 71–81.

    Article  PubMed  CAS  Google Scholar 

  73. Heinz BA, Rueckert RR, Shepard DA, et al. Genetic and molecular analyses of spontaneous mutants of human rhinovirus 14 that are resistant to an antiviral compound. J Virology 1989; 63: 2476–2485.

    PubMed  CAS  Google Scholar 

  74. Yasin SR, Al-Nakib W, Tyrrell DAJ. Pathogenicity for humans of human rhinovirus type 2 mutants resistant to or dependent on chalcone Ro 09–0410. Antimicrob Agents Chemother 1990; 34: 963–966.

    Article  PubMed  CAS  Google Scholar 

  75. Ahmad ALM, Dowsett AB and Tyrrell DAJ. Studies of rhinovirus resistant to an antiviral chalcone. Antivira Res 1987; 8: 27–39.

    Article  Google Scholar 

  76. Woods MG, Diana GD, Rogge MC, et al. In vitro and in vivo activities of WIN 54954, a new broad-spectrum antipicornavirus drug. Antimicrob Agents Chemother 1989; 33: 2069–2074.

    Article  PubMed  CAS  Google Scholar 

  77. Turner RB, Dutko FJ, Goldstein NH, et al. Efficacy of oral WIN 54954 for the prophylaxis of experimental rhinovirus infection. Antimicrob Agents Chemother 1993; 37: 297–300.

    Article  PubMed  CAS  Google Scholar 

  78. Gwaltney JM, Jr. Combined antiviral and antimediator treatment of rhinovirus colds. J Infect Dis 1992; 166: 776–782.

    Article  PubMed  Google Scholar 

  79. Greve JM, Davis G, Meyer AM, et al. The major human rhinovirus receptor is ICAM-1. Cell 1989; 56: 839–47.

    Article  PubMed  CAS  Google Scholar 

  80. Staunton DE, Merluzzi VJ, Rothlein R, et al. A cell adhesion molecule, ICAM-1, is the major surface receptor for rhino-viruses. Cell 1989: 56: 849–53.

    Article  PubMed  CAS  Google Scholar 

  81. Tomassini JE, Graham, D. DeWitt CM, et al. cDNA cloning reveals that the major group rhinovirus receptor in HeLa cells is intercellular adhesion molecule-1. Proc Natl Acad Sci 1989; 86: 4907–4911.

    Article  PubMed  CAS  Google Scholar 

  82. Olson NH, Kolatkar PR, Oliveira, MA, et al. Structure of human rhinovirus complexed with its receptor molecule. Proc Natl Acad Sci 1993; 90: 507–511.

    Article  PubMed  CAS  Google Scholar 

  83. Hofer F, Gruenberger M, Kowalski H, et al. Members of the low density lipoprotein receptor family mediate cell entry of a minor-group common cold virus. Proc Natl Acad Sci 1994; 91: 1839–1842.

    Article  PubMed  CAS  Google Scholar 

  84. Colonno RJ, Callahan PL, Long WJ. Isolation of a monoclonal antibody that blocks attachment of the major group of human rhinoviruses. J Virol 1986; 57: 7–12.

    PubMed  CAS  Google Scholar 

  85. Sperber SJ, Hayden FG. Protective effect of rhinovirus receptor blocking antibody in human fibroblast cells. Antiviral Res 1989; 12: 231–38.

    Article  PubMed  CAS  Google Scholar 

  86. Colonno RJ, Tomassini JE, Callahan PL. Isolation and characterization of a monoclonal antibody which blocks attachment of human rhinoviruses. In: Positive Strand RNA Viruses: Proceedings of a UCLA Symposium. ( MA Brinton and R L Rueckert, ed.) Alam Liss, New York, NY. 1987, pp 93–102.

    Google Scholar 

  87. Hayden FG, Gwaltney, JM, Jr., Colonno R.J. Modification of experimental rhinovirus colds by receptor blockade. Antiviral Res 1988; 9: 233–247.

    Article  PubMed  CAS  Google Scholar 

  88. Marlin SD, Staunton DE, Springer TA, et al. A soluble form intercellular adhesion molecule-1 inhibits rhinovirus infection. Nature 1990; 334: 70–72.

    Article  Google Scholar 

  89. Greve JM, Forte CP, Marlor CW, et al. Mechanisms of receptor-mediated rhinovirus neutralization defined by two forms of ICAM-1. J Virol 1991; 65: 6015–6023.

    PubMed  CAS  Google Scholar 

  90. Arruda E, Crump C, Marlin SD, et al. In vitro studies of the anti-rhinovirus activity of soluble ICAM-1. Antimicrob Agents Chemother 1992; 36: 1186–1191.

    Article  PubMed  CAS  Google Scholar 

  91. Martin S, Casasnovas JM, Staunton DE, et al. Efficient netrualization and disruption of rhinovirus by chimeric ICAM-1/immunoglobulin molecules. J Virol 1993; 67: 3561–68.

    PubMed  CAS  Google Scholar 

  92. Crump CE, Arruda E, Hayden FG. Comparative antirhinoviral activities of soluble intercellular adhesion molecule-I (sICAM-1) and chimeric ICAM-1/immunoglobulin A molecule. Antimicrob Agents Chemother 1994; 38: 1425–27.

    Article  PubMed  CAS  Google Scholar 

  93. Arruda E, Crump CE, Hayden FG. In vitro selection of human rhinovirus relatively resistant to soluble intercellular adhesion molecule-I. Antimicrob Agents Chemother 1994; 38: 66–70.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Arruda, E., Hayden, F.G. (1996). Update on Therapy of Influenza and Rhinovirus Infections. In: Mills, J., Volberding, P.A., Corey, L. (eds) Antiviral Chemotherapy 4. Advances in Experimental Medicine and Biology, vol 394. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9209-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9209-6_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9211-9

  • Online ISBN: 978-1-4757-9209-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics