Skip to main content

Commercialization of Nucleic Acid Probe Technology: Current Status

  • Chapter
Book cover Antimicrobial Susceptibility Testing

Abstract

Potential Application of Probes. There are four key diagnostic applications for Nucleic Acid (N.A.) Probe Assays — they are infectious disease diagnosis, genetic disease screening, cancer diagnosis and predisposition to disease screening. Furthermore, identity testing is a non-diagnostic application of N.A. probe assays which includes two specific categories: parenteral identity testing and forensic testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.L. Archer, E. Pennell, Detection of methicillin resistance in staphylococci by using a DNA probe, Antimicrob. Agents Chemother. 34(9): 1720–1724 (1990).

    Article  PubMed  CAS  Google Scholar 

  2. F. Barany, The ligase chain reaction (LCR) in a PCR world, PCR Methods and Applications 1:5–16 (1991).

    Article  PubMed  CAS  Google Scholar 

  3. C.E. Bush, L.J. DiMichele, W.R. Peterson, D.G. Sherman, and J.H. Godsey, Solid-phase time-resolved fluorescence detection of HIV PCR amplification product, Analytical Biochemistry. 202 (1): 146–151 (1992).

    Article  PubMed  CAS  Google Scholar 

  4. C.E. Bush, K.M. Vanden Brink, D.G. Sherman, W.R. Peterson, L.A. Beninsig, and J.H. Godsey, Detection of Escherichia coli r RNA using target amplification and time-resolved fluorescence detection, Molecular and Cellular Probes. 5:1064–1079 (1991).

    Article  Google Scholar 

  5. C.E. Bush, R.M. Donovan, W.R. Peterson, M.B. Jennings, V. Bolton, D.G. Sherman, K.M. Vanden Brink, L.A. Beninsig, J.H. Godsey, Detection of HIV-1 RNA in plasma from high risk pediatric patients using the self-sustained sequence replication reaction, J. Clin. Microbiol 30(2):281–286 (1992).

    PubMed  CAS  Google Scholar 

  6. P. Coll, K. Phillips, F.C Tenover, Evaluation of a rapid method of extracting DNA from stool samples for use in hybridization assays, J. Clin. Microbiol. 27(10):2245–2248 (1989).

    PubMed  CAS  Google Scholar 

  7. J. DeLey, Intra and Intergeneric Similarities of the Ribosomal RNA Cistrons of Acetobacter and Gluonobacter, Int. J. System. Bact. 30 (l):7–27 (1980).

    Google Scholar 

  8. J.C. Guatelli, K.M. Whitfield, D.Y. Kwoh, K.J. Barringer, D.D. Richman, and T.R. Gingeras, Isothermal In Vitro Amplification of Nucleic Acids by a Multienzyme Reaction Modeled After Retroviral Replication, Proc. Natl. Acad. Sci. 87:1874–1878 (1990).

    Article  PubMed  CAS  Google Scholar 

  9. S. Huovinen, M.L. Klossner, M.L. Katila, P. Houvinen, Plasmid-Mediated Beta-Lactamases among aminoglycoside resitant gram-negative bacilli, Scand. J Infect. Dis. 21 (3):303–309 (1989).

    Article  PubMed  CAS  Google Scholar 

  10. G.A. Jacoby, M.J. Blaser, P. Santanam, H. Hachler, F.H. Kayser, R.S. Hare, G.H. Miller, Appearance of Amikacin and Tobramycin Resistance Due to 4’-Aminoglycoside Nucleotidyltransferase [ANT(4’)-II] in Gram-Negative Pathogens, Antimicrob. Agents Chemother. 34(12):2381–2386 (1990).

    Article  PubMed  CAS  Google Scholar 

  11. D.Y. Kwoh, G.R. Davis, K.M. Whitfield, H.L. Chappelle, L. DiMichele, and T.R. Gingeras, Transciption-Based Amplification System and Detection of Amplified Human Immunodeficiency Cirus Type 1 with a Bead-Based Sandwich Hybridization Format, Proc. Natl. Acad. Sci. 86:1171–1177 (1989).

    Article  Google Scholar 

  12. P.M. Lazardi, C.E. Guerra, H. Lomeli, I. Tussie-Luna, F.R. Kramer, Exponential Amplification of Recombinant-RNA Hybridization Probes, Biotechnology. 6:1197–1202 (1989).

    Google Scholar 

  13. R. Lewis, Innovative Alternatives to PCR Technology are Proliferating, The Scientist Jan. 21:23–24 (1991).

    Google Scholar 

  14. M.C Longo, M.S. Rerninger, and Hartley, Use of Uracil DNA Glycosylase to Control Carry-over Contamination in Polymerase Chain Reactions, Gene 93:125–128(1990).

    Article  PubMed  CAS  Google Scholar 

  15. K.B. Mullis, and F.A. Faloona, Specific Synthesis of DNA In Vitro Via a Polymerase-Catalyzed Chain Reaction, Methods Enzymol. 155:335–350 (1987).

    Article  PubMed  CAS  Google Scholar 

  16. H. Ounissi, E. Derlot, C. Carlier, P. Courvalin, Gene Homogeneity for Aminoglycoside-Modifying Enzymes in Gram-Positive Cocci, Antimicrob. Agents Chemother. 34(11):2164–2168 (1990).

    Article  PubMed  CAS  Google Scholar 

  17. R. Sanchez-Pescador, M.S. Stempien, and M.S. Urdea, Rapid Chemiluminescent Nucleic Acid Assays for Detection of TEM-1 Beta-Lactamase-Mediated Penicillin Resistance in Neisseria gonorrhoeae and Other Bacteria, J. Clin. Microbiol. 26:1934–1938 (1988).

    PubMed  CAS  Google Scholar 

  18. F.C. Tenover, K.L. Phillips, T. Gilbert, P. Lockhart, P.J. O’Hara, J.J. Plorde, Development of a DNA Probe from the Deoxyribonucleotide Sequence of a 3-N-Aminoglycoside Acetyltransferase [AAC(3)-1] Resistance Gene, Antimicrob. Agents Chemother. 33(4):551–559 (1989).

    Article  PubMed  CAS  Google Scholar 

  19. M.S. Urdea, J.A. Running, T. Horn, J. Clyne, L. Ku, and B.D. Warner, A Novel Method for the Rapid Detection of Specific Nucleotide Sequences in Crude Biological Samples Without Blotting or Radioactivity: Application to the Analysis of Hepatitis B Virus in Human Serum, Gene 61:253–264 (1987).

    Article  PubMed  CAS  Google Scholar 

  20. M.S. Urdea, B.D. Warner, J.A. Running M. Stempien, J. Clyne, and T. Horn, A Comparison of Non-Radioisotopic Hybridization Assay Methods Using Fluorescent, Chemiluminescent and Enzyme-labeled Synthetic Oligodeoxyrobonucleotide Probes, Nucleic Acid Res. 16:4937–4956(1988).

    Article  PubMed  CAS  Google Scholar 

  21. I. Wieder, Method and Apparatus for Improved Analytical Fluorescent Spectroscopy, U.S. Patent 4,058,732 (November 15, 1977).

    Google Scholar 

  22. D.Y. Wu, and R.B. Wallace, The Ligation Amplification Reaction (LAR)-Amplification of Specific DNA Sequences Using Sequential Rounds of Template-Dependent Ligation, Genomics 4:560–569 (1989).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Godsey, J.H., Vanden Brink, K.M., DiMichele, L.J., Beninsig, L.A., Peterson, W.R., Sherman, D.G. (1994). Commercialization of Nucleic Acid Probe Technology: Current Status. In: Poupard, J.A., Walsh, L.R., Kleger, B. (eds) Antimicrobial Susceptibility Testing. Advances in Experimental Medicine and Biology, vol 349. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9206-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9206-5_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9208-9

  • Online ISBN: 978-1-4757-9206-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics