Advertisement

Bacterial Resistance to Carbapenems

  • David M. Livermore
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 390)

Abstract

Carbapenems differ from conventional penicillins (penams) in having no sulfur atom in their 5-membered ring and in having a double bond between carbons 2 and 3 (figure 1). Imipenem, the first commercially-available carbapenem, (Merck Sharp and Dohme) has been used for nearly 10 years and is now being joined by a second agent, meropenem (Zeneca/Sumitomo). The development of a third carbapenem, biapenem (Lederle) has recently been discontinued. In contrast to all useful penicillins and cephalosporins, and to various experimental carbapenems, these three agents carry the substituents to the β-lactam ring in the trans configuration. This factor is critical to β-lactamase stability in carbapenems.1

Keywords

Antimicrob Agent Serratia Marcescens Carbapenem Resistance Lactam Antibiotic Carbapenemase Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. G. Christensen, Structure-activity relationships in 13-lactam antibiotics, in “ß-Lactam Antibiotics, Mode of Action, New Developments and Future Prospects”, M. Shockman and G.D. Salton, eds., Academic Press, New York (1981).Google Scholar
  2. 2.
    R.C. Moellering, G. M. Eliopoulos and D.E. Sentochnik, The carbapenems: new broad spectrum f3-lactam antibiotics, J. Antimicrob Chemother. 24 Suppl A: 1 (1989).Google Scholar
  3. 3.
    J.R. Edwards, P.J. Turner, C. Wannop, E.S. Withnell, A.J. Grindley and K. Nairn. In vitro antibacterial activity of SM-7338, a carbapenem antibiotic with stability to renal dehydropeptidase I, Antimicrob Agents Chemother. 33:215 (1989).Google Scholar
  4. 4.
    P.J. Petersen, N. V. Jacobus, W.J. Weiss and R.T. Testa, In vitro and in vivo activities of LJC 10,627, a new carbapenem with stability to dehydropeptidase I, Antimicrob Agents Chemother. 35:203 (1991).Google Scholar
  5. 5.
    J.B. Patel and R.E. Giles, Meropenem: lack of protoconvulsive tendency in mice, J. Antimicrob Chemother. 24 Suppl A: 307 (1989).Google Scholar
  6. 6.
    K. Bush, Characterization of (3-lactamases, Antimicrob Agents Chemother. 33: 259 (in three parts) (1989)Google Scholar
  7. 7.
    D.M. Livermore, Mechanisms of resistance to ß-lactam antibiotics, Scand J Infect Dis. Suppl 78: 7 (1991).Google Scholar
  8. 8.
    C.C. Sanders and W.E. Sanders, f3-Lactam resistance in gram-negative bacteria: global trends and clinical impact, Clin Infect Dis. 15: 824. (1992).CrossRefPubMedGoogle Scholar
  9. 9.
    D.R. Snydman, Clinical implications of multi-resistance in the intensive care unit, Scand J Infect Dis. Suppl 78: 54 (1991).Google Scholar
  10. 10.
    P.M. Shah, R Asanger and F.M. Kahan, Incidence of multi-resistance in gram-negative aerobes from intensive care units of ten German hospitals. Scand J Infect Dis. Suppl 78: 22 (1991).Google Scholar
  11. 11.
    L. Verbist, Incidence of multiresistance in Gram-negative bacterial isolates from intensive care units in Belgium: a surveillance study, Scand J Infect Dis. Suppl 78: 45 (1991).Google Scholar
  12. 12.
    R.J.A. Buirma, A.M. Horrevorts, J.H.T. Wagenvoort and Participants in the 1990 Dutch Surveillance Study, Incidence of multi-resistant Gram-negative isolates in eight Dutch Hospitals, Scand J Infect Dis. Suppl 78: 35 (1991).Google Scholar
  13. 13.
    R.L. Charnas and J.R Knowles, Inhibition of RTEM (3-lactamase from Escherichia coli: interactions of enzyme with derivatives of olivanic acid, Biochemistry. 20: 2732 (1981).CrossRefPubMedGoogle Scholar
  14. 14.
    K. Ubukata, N. Yamashita, M. Konno, Occurrence of a 13-lactam inducible penicillin-binding protein in methicillin-resistant staphylococci, Antimicrob Agents Chemother. 27: 851 (1985).CrossRefPubMedGoogle Scholar
  15. 15.
    G. Satta, M. Lleo, E. Tonin, G.M. Rossolini and R. Fontana, Substitution of the antibiotic target: a mechanism of intrinsic resistance to beta-lactam antibiotics in gram-positive bacteria, Current Topics in Infectious Diseases and Clinical Microbiology. 3: 31 (1990).Google Scholar
  16. 16.
    F.M. Kayser, G. Morenzoni, A. Strassle and K. Hadorn, Activity of meropenem against gram-positive cocci, J Antimicrob Chemother. 24 Suppl. A: 101 (1989).Google Scholar
  17. 17.
    R. Schwalbe, M. Coyle, P. Gilligan, P. Hanff, G. Hollick and M. Pfaller, Prevalence and clinical significance of imipenem-double zone Staphylococcus haemolyticus, in “Program and Abstracts of the Thirtieth Interscience Conference on Antimicrobial Agents and Chemotherapy, 1990 Atlanta, Ga.” Abstract 475, p. 165, American Society for Microbiology, Washington, DC (1990).Google Scholar
  18. 18.
    R. Fontana, Penicillin-binding proteins and the intrinsic resistance to beta-lactams in gram-positive cocci, Antimicrob Agents Chemother. 16: 412 (1985).CrossRefGoogle Scholar
  19. 19.
    K. Klugman, Pneumococcal resistance to antibiotics, Clin Microbiol Rev. 3: 171, (1990).PubMedGoogle Scholar
  20. 20.
    C.G. Dawson, A. Hutchison, J.A. Brannigan, R.C. George, D. Hansman, J. Linares, A. Tomasz, J.M. Smith and B.G. Spratt, Horizontal transfer of penicillin-binding protein genes in penicillin-resistant clinical isolates of Streptococcus pneumoniae, Proc Nat Acad Sci (USA). 86: 8842 (1989).CrossRefGoogle Scholar
  21. 21.
    A. Bauernfiend, R. Jungwirth and S. Schweighart, In-vitro activity of meropenem, imipenem and penem HRE 664 and ceftazidime against clinical isolates from West Germany, J Antimicrob Chemother. 24 Suppl. A: 73 (1989).Google Scholar
  22. 22.
    S.K. Spangler, P.C. Appelbaum, T. Kitch and M.R. Jacobs, Activity of FK 037, cefpirome, cefepime, ceftriaxone, cefotaxime, ceftazidime, imipenem, biapenem and vancomycin against 90 penicillin-susceptible and -resistant pneumococci, in “Program and Abstracts of the Thirty-third Interscience Conference on Antimicrobial Agents and Chemotherapy, 1993 New Orleans, La.” Abstract 872, p. 279, American Society for Microbiology, Washington, DC (1993).Google Scholar
  23. 23.
    M. Powell, P. Seetulsingh and J.D. Williams, In-vitro susceptibility of Haemophilus influenzae to meropenem compared with imipenem, five other (3-lactams, chloramphenicol and ciprofloxacin, J Antimicrob Chemother. 24 Suppl. A: 175 (1989).Google Scholar
  24. 24.
    M. Powell and D.M. Livermore, Selection and transformation of non-(3-lactamasemediated insusceptibility to ß-lactams in Haemophilus influenzae: lack of cross-resistance between carbapenems and other agents, J Antimicrob Chemother. 26: 741 (1990).CrossRefPubMedGoogle Scholar
  25. 25.
    P.A. James, F.K. Hossian, D.A.Lewis and D.G. White, f3-Lactam susceptibility of Haemophilus influenzae strains showing reduced susceptibility to cefuroxime, J Antimicrob Chemother. 32: 239 (1993).CrossRefPubMedGoogle Scholar
  26. 26.
    S-F. Yeo and D.M.Livermore, Comparative in-vitro activity of biapenem and other carbapenems against Haemophilus influenzae isolates with known resistance mechanisms to ampicillin, J Antimicrob Chemother. 33: 861 (1994).CrossRefPubMedGoogle Scholar
  27. 27.
    Y. Yang and D.M Livermore, Interactions of meropenem with Class I chromosomal 3-lactamases. J Antimicrob Chemother. 24 Suppl. A: 207. (1989).Google Scholar
  28. 28.
    J. Monks, and S.G. Waley, Imipenem as a substrate and inhibitor of ß-lactamases, Biochem J. 253: 323 (1988).PubMedGoogle Scholar
  29. 29.
    J.P. Quinn, E.J. Dudek, C.A. DiVencenzo, D.A. Lucks and S.A Lerner, Emergence of resistance to imipenem during therapy of Pseudornonas aeruginosa infections, J Infect Dis. 154: 289 (1986).CrossRefPubMedGoogle Scholar
  30. 30.
    J. Trias and H. Nikaido, H, Outer membrane protein D2 catalyses the facilitated diffusion of penems and carbapenems through the outer membrane of Pseudomonas aeruginosa, Antimicrob Agents Chemother. 34: 52 (1990).CrossRefPubMedGoogle Scholar
  31. 31.
    D.M. Livermore, Interplay of impermeability and chromosomal (3-lactamase in imipenem resistant Pseudomonas aeruginosa, Antimicrob Agents Chemother. 36: 2046 (1992).CrossRefPubMedGoogle Scholar
  32. 32.
    X.Y. Zhou, M-D. Kitzis and 1. Gutmann, Role of cephalosporinase in carbapenem resistance of clinical isolates of Pseudomonas aeruginosa, Antimicrob Agents Chemother. 34: 1387 (1993).CrossRefGoogle Scholar
  33. 33.
    H.Y. Chen. and D. M. Livermore, D.M, In-vitro activity of biapenem, compared to imipenem and meropenem, against Pseudornonas aeruginosa strains and mutants with known resistance mechanisms,,J Antimicrob Chemother. 35: 949 (1994).Google Scholar
  34. 34.
    D.M. Livermore and Y-J Yang, (3-Lactamase lability and inducer power of newer 3-lactams in relation to their activity against ß-lactamase inducibility mutants of Pseudomonas aeruginosa, J Infect Dis. 155: 775 (1987).Google Scholar
  35. 35.
    D.M. Livermore. and Y. Yang, Comparative activity of meropenem against Pseudomonas aeruginosa strains with will-characterized resistance mechanisms, J Antimicrob Chemother. 24 Suppl. A: 149 (1989).Google Scholar
  36. 36.
    N. Masuda. and S. Ohya, Cross-resistance to meropenem, cephems and quinolones in Pseudomonas aeruginosa, Antimicrob Agents Chemother. 36: 1847 (1992).Google Scholar
  37. 37.
    X-Z, Li, D. Ma, D.M. Livermore, and H. Nikaido. Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: Active efflux as a contributing factor to f3-lactam resistance. Antimicrob Agents Chemother. 38: 1742 (1994).Google Scholar
  38. 38.
    E.H. Lee, M. H. Jarlier, M. D. Kitzis, G. Pialoux, E. Collatz and L. Gutmann, Association of two resistance mechanisms in a clinical isolate of Enterobacter cloacae with high level resistance to imipenem. Antimicrob Agents Chemother. 35: 1093 (1991).CrossRefPubMedGoogle Scholar
  39. 39.
    A. Raimondi, A. Traverso and H. Nikaido, Imipenem-and meropenem-resistant mutants of Enterobacter cloacae and Proteus rettgeri lack porins, Antimicrob Agents Chemother. 35: 1174 (1991).CrossRefPubMedGoogle Scholar
  40. 40.
    S. Mehtar, A. Tsakris and T.L. Pitt, Imipenem resistance in Proteus mirabilis, J Antimicrob. Chemother. 26: 612 (1991).CrossRefGoogle Scholar
  41. 41.
    L.V.J. Piddock and H.L. Turner, Activity of meropenem against imipenem-resistant bacteria and in vitro selection of carbapenem-resistant Enterobacteriaceae, Eur J Clin Microbiol Infect Dis. 11: 1186 (1992).CrossRefPubMedGoogle Scholar
  42. 42.
    Y. Saino, F. Kobayashi, M. Inoue and S. Mitsuhashi, Purification and properties of the inducible penicillin (3-lactamase isolated from Pseudomonas maltophilia, Antimicrob Agents Chemother. 22: 564 (1985).CrossRefGoogle Scholar
  43. 43.
    J.P. Iaconis and C. C. Sanders, Purification and characterization of inducible ß-lactamases in Aeromonas spp. Antimicrob Agents Chemother. 34: 44 (1990).CrossRefPubMedGoogle Scholar
  44. 44.
    E.P. Abraham and S.G. Waley, 13-Lactamases from Bacillus cereus, in “Beta-Lactamases” J.M.T. Hamilton-Miller and J.T. Smith eds., Academic Press, New York (1979).Google Scholar
  45. 45.
    K. Sato, R. Fujii, R. Okatomo, M. Inoue and S. Mitsuhashi, Biochemical properties of (3-lactamase produced by Flavobacterium odoratum, Antimicrob. Agents Chemother. 27: 612 (1985).CrossRefGoogle Scholar
  46. 46.
    T. Fujii, K. Sato, K. Miyata, M. Inoue and S. Mitsuhashi, Biochemical properties of ß-lactamase produced by Legionella gormanii, Antimicrob Agents Chemother. 29: 925 (1985).CrossRefGoogle Scholar
  47. 47.
    D. Payne, R. Cramp, J. Bateson, G.Clarke and D.J.C. Knowles, Detection of metallo-and serine 13-lactamases from Xanthomonas maltophilia, in “Program and Abstracts of the Thirty-third Interscience Conference on Antimicrobial Agents and Chemotherapy, 1993 New Orleans, La” Abstract 1522, p. 397, American Society for Microbiology, Washington, DC (1993).Google Scholar
  48. 48.
    A. von Graevenitz and C. Bucher, The effect of N-formimidoyl thienamycin, ceftazidime, cefotiam, ceftriaxone and cefotaxime on non-fermentative gram-negative rods, Aeromonas, Plesiomonas, and Enterobacter agglomerans, Infection. 10: 293 (1982).CrossRefGoogle Scholar
  49. 49.
    M. Akova, G. Bonfiglio and D. M. Livermore, Susceptibility to 13-lactam antibiotics of mutant strains of Xanthomonas maltophilia with high-and low-level constitutive expression of L1 and L2 13-lactamases, J Med Microbiol. 35: 208 (1991).CrossRefPubMedGoogle Scholar
  50. 50.
    K. Shannon, A. King and I. Phillips, ß-Lactamases with high activity against imipenem and SCH34343 from Aeromonas hydrophila, J Antimicrob Chemother. 12: 507 (1986).Google Scholar
  51. 51.
    D.M. Livermore, Carbapenemases, J Antimicrob Chemother. 29: 609 (1992).CrossRefGoogle Scholar
  52. 52.
    D.J. Payne, Metallo-13-lactamases - a new therapeutic challenge, J Med Microbiol. 39: 93 (1993).CrossRefPubMedGoogle Scholar
  53. 53.
    A. Yotsuji, S. Minami, M. Inoue and S. Mitsuhashi, Properties of novel ß-lactamase produced by Bacteroides fragilis, Antimicrob. Agents Chemother. 24: 925 (1983).CrossRefGoogle Scholar
  54. 54.
    I. Podglajen, J. Breuil, A. Coutrot, L. Gutmann and E. Collatz, Incidence of the carbapenem (Cpm) resistance gene cfiA and variability in its genomic environment in Cpm-resistant and susceptible clinical isolates of Bacteroides fragilis, in “Program and Abstracts of the Thirty-second Interscience Conference on Antimicrobial Agents and Chemotherapy, 1992 Anaheim Ca.” Abstract 583, p. 208, American Society for Microbiology, Washington, DC (1992).Google Scholar
  55. 55.
    I. Podglajen, J. Breuil, A. and E. Collatz, Insertion of a novel DNA sequence IS1186, immediately upstream of the silent carbapenemase gene cfiA, promotes expression of carbapenem resistance in clinical isolates of Bacteroides fragilis, in “Program and Abstracts of the Thirty-third Interscience Conference on Antimicrobial Agents and Chemotherapy, 1993 New Orleans, La” Abstract 587, p. 226, American Society for Microbiology, Washington, DC (1993).Google Scholar
  56. 56.
    K. Bandoh, K. Watanabe, Y. Muto, Y. Tanaka, N. Kato and K. Uneo, Conjugal transfer of imipenem resistance in Bacteroides fragilis, J Antibiotics (Tokyo). 45: 542 (1992).CrossRefGoogle Scholar
  57. 57.
    E. Osano, Y. Arakawa, R. Wacharotayankum, M. Ohta, T. Horii, H. Ito, F. Yoshimura, and N. Kato. Molecular characterization of an enterobacterial metallo-ß-lactamase found in a clinical isolate of Serratia marcescens that shows imipenem resistance. Antimicrob Agents Chemother. 38: 71 (1994).CrossRefPubMedGoogle Scholar
  58. 58.
    Y. Arakawa, H. Ito, S. Ohuska, N. Kato, and M. Ohta. Genetic analyses of an enterobacterial metallo-ß-lactamase carried by a large plasmid of Serratia marcescens. In “Program and Abstracts of the 34th Interscience Conference on Antimicrobial Agents and Chemotherapy, 1994 Orlando, FL.” Abstract C64, p. 89, American Society for Microbiology, Washington, D.C.Google Scholar
  59. 59.
    M. Watanabe, S. Iyobe, M. Inoue and S. Mitsuhashi, Transferable imipenem resistance in Pseudomonas aeruginosa, Antimicrob. Agents Chemother. 35: 147 (1991).CrossRefGoogle Scholar
  60. 60.
    B.A. Rasmussen, Y. Gluzman and F. P. Tally. Cloning and sequencing of the Class B ß-lactamase gene from Bacteroides fragilis TAL3636. Antimicrob Agents Chemother. 34: 1590 (1990).CrossRefPubMedGoogle Scholar
  61. 61.
    O. Massidda, G.M. Rossolini and G. Satta, The Aeromonas hydrophila cphA gene; molecular heterogeneity amongst Class B metallo-ß-lactamases, J Bacteriol. 173: 4611 (1991).PubMedGoogle Scholar
  62. 62.
    R. Bicknell, E. L. Emanuel, J. Gagnon and S.G. Waley, The production and molecular properties of the zinc ß-lactamase of Pseudomonas mallophilia IID 1275, Biochem J. 229: 791 (1985).PubMedGoogle Scholar
  63. 63.
    P. Nordmann, S. Mariotte, T. Naas, R. Labia and M-H Nicholas, Biochemical properties of a carbapenem-hydrolyzing ß-lactamase from Enterobacter cloacae and cloning of the gene into Escherichia coli, Antimicrob Agents Chemother. 37: 939 (1993).CrossRefPubMedGoogle Scholar
  64. 64.
    P. Nordmann and T. Naas, DNA and protein sequence analysis of a carbapenemase and its regulator from Enterobacter cloacae, in “Program and Abstracts of the Thirty-third Interscience Conference on Antimicrobial Agents and Chemotherapy, 1993 New Orleans, Fl.” Abstract 586, p. 226, American Society for Microbiology, Washington, DC (1993).Google Scholar
  65. 65.
    A.A. Medeiros and R.S. Hare, Beta-lactamase mediated resistance to penems and carbapenems amongst Enterobacteriaceae, in “Program and Abstracts of the Twenty-Sixth Interscience Conference on Antimicrobial Agents and Chemotherapy, 1986, New Orleans, La.” Abstract 116, p. 117. American Society for Microbiology, Washington, DC. (1986).Google Scholar
  66. 66.
    B.A. Rasmussen, D. Keeney, Y. Yang, C. O’Gara, K. Bush, and A.A. Medeires. Cloning, sequencing and biochemical characterization of a novel carbapenemhydrolyzing ß-lactamase from Enterobacter cloacae. In “Program and Abstracts of the 34th Interscience Conference on Antimicrobial Agents and Chemotherapy. 1994, Orlando, Fl.” Abstract C62, p. 89. American Society for Microbiology, Washington, D.C.Google Scholar
  67. 67.
    Y. Yang, P. Wu and D. M. Livermore, Biochemical characterization of a 3-lactamase that hydrolyses penems and carbapenems from two Serratia marcescens isolates, Antimicrob Agents Chemother. 34: 755 (1990).CrossRefPubMedGoogle Scholar
  68. 68.
    T.L. Naas, L. Vandel, W. Songakoff, D.M. Livermore, and P. Nordmann. Cloning and sequence analysis of the carbapenem-hydrolyzing class A 3-lactamase, Sme-1, from Sen - atia marcescens S6. Antimicrob Agents Chemother. 38: 1262 (1994).CrossRefPubMedGoogle Scholar
  69. 69.
    S. Hurlbut, G.J. Cuchural and F.P. Tally, Imipenem resistance in Bucteroides distasonis mediated by a novel ß-lactamase, Antimicrob Agents Chemother. 34: 117 (1990).CrossRefPubMedGoogle Scholar
  70. 70.
    K. Hirai, S. Iyobe, M. Inoue and S, Mitsuhashi, Purification and properties of a new ß-lactamase from Pseudomonas cepacia, Antimicrob Agents Chemother. 17:355 (1980) and Erratum Note 18: 362 (1981).Google Scholar
  71. 71.
    I.N. Simpson, R. Hunter, J.R.W. Govan and J.W. Nelson, Do all Pseudomonas cepacia produce carbapenemase? J Antimicrob Chemother, 32: 339 (1993).CrossRefPubMedGoogle Scholar
  72. 72.
    R. Paton, R.S. Miles, J. Hood and S.G.B. Amyes, ARI-1: ß-lactamase-mediated imipenem resistance in Acinetobacter baumanii, Int J Antimicrob Agents. 2: 81 (1993).CrossRefPubMedGoogle Scholar
  73. 73.
    B.E. Murray, Life and times of the Enterococcus, Clin Microbiol Rev. 3: 46 (1990).PubMedGoogle Scholar
  74. 74.
    J.P. Quinn, A.E. Studemeister, C.A. DiVencenzo and SA Lerner, Resistance to imipenem in Pseudomonas aeruginosa: clinical experience and biochemical mechanisms, Rev Infect Dis. 10: 892 (1988).CrossRefPubMedGoogle Scholar
  75. 75.
    N. Khardori, L. Elting, E. Wong, B. Schable and G.P. Bodey, Nosocomial infectious due to Xanthomonas maltophilia (Pseudomonas maltophilia) in patients with cancer, Rev Infect Dis. 12: 997 (1990).CrossRefPubMedGoogle Scholar
  76. 76.
    H.Y. Chen, G. Bonfiglio, M. Allen, D. Piper, T. Edwardson, D. McVey and D.M. Livermore, Multi-centre survey of the comparative in-vitro activity of piperacillin/tazobactam against isolates from hospitalized patients, J Antimicrob Chemother. 32: 247 (1993).CrossRefPubMedGoogle Scholar
  77. 77.
    B.A. Rasmussen, K. Bush and F.P. Tally, Antimicrobial resistance in Bacteroides, Clin Infect Dis. 16: S390 (1993).CrossRefPubMedGoogle Scholar
  78. 78.
    K. Bandoh, K. Uneo and K. Watanabe, Susceptibility patterns and resistance to imipenem in the Bacteroides fragilis group species in Japan: a 4-year study, Clin Infect Dis. 16: S382 (1993).CrossRefPubMedGoogle Scholar
  79. 79.
    R. Wise, In vitro and pharmacokinetic properties of the carbapenems, Antimicrob Agents Chemother 30:343 (1986).Google Scholar
  80. 80.
    H.F. Chambers and C.J. Hackbarth, A ß-lactam antibiotic (BLA) with high affinity for PBP2a has potent activity in a rabbit model of aortic valve endocarditis (AVE). in “ Program Supplement 33rd ICAAC, American Society for Microbiology, Washington, DC (1993).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • David M. Livermore
    • 1
  1. 1.Department of Medical MicrobiologyThe London Hospital Medical CollegeLondonUK

Personalised recommendations