Advertisement

Resistance to Anti-Human Immunodeficiency Virus Therapeutic Agents

  • Emilio A. Emini
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 390)

Abstract

The human immunodeficiency virus type 1 (HIV-1) is the causative agent of the acquired immunodeficiency syndrome and is a member of the lentiviral subfamily of the retroviruses. The virus predominantly infects cells that express the viral receptor, the CD4 cell differentiation antigen, on their surfaces. These include helper T-lymphocytes and cells of monocytic origin. Upon introduction into the human host, the virus establishes a longterm persistent infection that, given the importance of the target cells to immune system function, results in this system’s gradual deterioration. Following an extended period of infection (typically 5–10 years), the deterioration becomes clinically manifest and culminates in the death of the host.

Keywords

Human Immunodeficiency Virus Human Immunodeficiency Virus Type Nucleoside Analog Acquire Immunodeficiency Syndrome Acute Virus Infection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Mitsuya, R. Yarchoan,and S. Broder, S. Molecular targets for AIDS therapy. Science. 249: 1533–1544 (1990).PubMedCrossRefGoogle Scholar
  2. 2.
    H. Mitsuya, K.J. Weinhold, P.A. Furman, M.H. St. Clair, S.N. Lehrman, R.C. Gallo, D. Bolognesi, D.W. Barry, and S. Broder. 3’-Azido-3’-deoxythmymidine (BW A509U): An antiviral agent that inhibits the infectivity and cytopathic effect of human T-lymphotropic virus type III/lymphadenopathy-associated virus in vitro. Proc. Natl. Acad. Sci. U.S.A. 82: 7096–7100 (1985).PubMedCrossRefGoogle Scholar
  3. 3.
    H. Mitsuya, and S. Broder. Inhibition of the in vitro infectivity and cytopathic effect of human T-lymphotrophic virus type III/lymphadenopathy-associated virus (HTLV-III/LAV) by 2’,3’-dideoxynucleosides. Proc. Natl. Acad. Sci. U.S.A. 83: 1911–1915 (1986).PubMedCrossRefGoogle Scholar
  4. 4.
    M. Baba, R. Pauwels, P. Herdewijn, E. De Clercq, J. Desmyter, and M. Vandeputte. Both 2’,3’-dideoxythmidine and its 2’,3’-unsaturated derivative (2’,3’dideoxythmidinene) are potent and selective inhibitors of human immunodeficiency virus in vitro. Biochem. Biophys. Res. Commun. 142: 128134 (1987).Google Scholar
  5. 5.
    T.S. Lin, R.F. Schinazi, and W.H. Prusoff. Potent and selective in vitro activity of 3’-deoxythymidin-2’-ene(3’-deoxy-2,’3’-didehydrothymidine) against human immunodeficiency virus. Biochem. Pharmacol. 36: 2713–2718 (1987).PubMedCrossRefGoogle Scholar
  6. 6.
    J.A.V. Coates, N. Cammack, H.J. Jenkinson, A.J. Jowett, M.I. Jowett, B.A. Pearson, C.R. Penn, P.L. Rouse, K.C. Viner, and J.M. Cameron. (-)-2’-deoxy-3’thiacytidine is a potent, highly selective inhibitor of human immunodeficiency virus type 1 and type 2 replication in vitro. Antimicrob. Agents Chemother. 36: 733–739 (1992).PubMedCrossRefGoogle Scholar
  7. 7.
    R.F. Schinazi, A. McMillan, D. Cannon, R. Mathis, R.M. Lloyd, A. Peck, J.P. Sommadossi, M. St. Clair, J. Wilson, P.A. Furman, G. Painter, W.B. Choi, and D.C. Liotta, D.C. Selective inhibition of human immunodeficiency viruses by racemates and enantiomers of cis-5-fluoro-1-[2-(hydroxymethyl)-1,3-oxathiolan5-yl]cytosine. Antimicrob. Agents Chemother. 36: 2423–2431 (1992).CrossRefGoogle Scholar
  8. 8.
    M.J. Browne, H.K. Mayer, S.B.D. Chafee, M.N. Dudley, M.R., Posner, S.M. Steinberg, K.K. Graham, S.M. Geletko, S.H. Zinner, S.L. Denman, L.M. Dunkle, S. Kaul, C. M.Laren, G. Skowron, N.M. Kouttab, T.A. Kennedy, A.B. Weitberg, and G.A. Curt. 2’,3’-didehydro-3’-deoxythymidine (d4T) in patients with AIDS or AIDS-related complex: A phase I trial. J. Inf. Dis. 167: 21–29 (1993).Google Scholar
  9. 9.
    M.A. Fischl, D.D. Richman, M.H. Grieco, M.S. Gottlieb, P.A. Volberding, O.L. Laskin, J.M. Leedon, J.E. Groopman, D. Mildvan, R.T. Schooley, G.G. Jackson, D.T. Dirack, D.W. King, and the AZT collaborative working group. The efficacy of azidothymidine (AZT) in the treatment of patients with AIDS and AIDS-related complex. A double-blind, placebo-controlled trial. New Engl. J. Med. 317: 185191 (1987).Google Scholar
  10. 10.
    R. Yarchoan, C.F. Perno, R.V. Thomas, R.W. Klecker, J.P. Allain, R.J. Willis, N. McAtee, M.A. Fischl, R. Dubinsky, M.C. McNeely, Il. Mitsuya, J.M. Pluda, T.J. Lawley, M. Leuther, B. Safai, J.M. Collins, C.E. Myers, and S. Broder. Phase I studies of 2’,3’-dideoxycytidine in severe human immunodeficiency virus infection as a single agent and alternating with zidovudine (AZT). Lancet 1: 7681 (1988).Google Scholar
  11. T.C. Merigan, G. Skowron, S.A. Bozzettc, D. Richman, R. Uttamchandani, M. Fischl, R. Schooley, M. Hirsch, W. Soo, C. Pettinelli, H. Schaumburg, and the ddC Study Group of the AIDS Clinical Trials Group. Circulating p24 antigen levels and responses to dideoxycytidine in human immunodeficiency virus (HIV) infections. A phase I and II study. Ann. Intern. Med. 110: 189–194 (1989).Google Scholar
  12. 12.
    T.P. Cooley, L.M. Kunches, C.A. Saunders, J.K. Ritter, C.J. Perkins, C. McLaren, M.R.C. Path, R.P. McCaffrey, and H.A. Liebman. Once-daily administration of 2’,3’-dideoxyinosine (ddI) in patients with the acquired immunodeficiency syndrome or AIDS-related complex. Results of a phase I trial. New Engl. J. Med. 322: 1340–1345 (1990).PubMedCrossRefGoogle Scholar
  13. 13.
    J.S. Lambert, M. Seidlin,R.C. Reichman, C.S. Plank, M. Laverty, G.D. Morse, C. Knupp, C. McLaren, C. Pettinelli, F.T. Valentine, and R. Dolin. 2’,3’dideoxyinosine (ddI) in patients with the acquired immunodeficiency syndrome or AIDS-related complex. A phase I trial. New Engl. J. Med. 322: 1333–1340 (1990).Google Scholar
  14. 14.
    B.A. Larder, G. Darby, and D.D. Richman. HIV with reduced sensitivity to zidovudine (AZT) isolated during prolonged therapy. Science 243: 1731–1734 (1989).PubMedCrossRefGoogle Scholar
  15. 15.
    B.A. Larder, and S.D. Kemp. Multiple mutations in HIV-1 reverse transcriptase confer high-level resistance to zidovudine (AZT). Science 246: 1155–1158 (1989).PubMedCrossRefGoogle Scholar
  16. 16.
    P. Kellam, C.A.B. Boucher, and B.A. Larder. Fifth mutation in human immunodeficiency virus type 1 reverse transcriptase contributes to the development of high-level resistance to zidovudine. Proc. Natl. Acad. Sci. U.S.A. 89: 1934–1938 (1992).PubMedCrossRefGoogle Scholar
  17. 17.
    M.H. St. Clair, J.L. Martin, G. Tudor-Williams, M.C. Bach, C.L. Vavro, D.M. King, P. Kellam, S.D. Kemp, and B.A. Larder. Resistance to ddI and sensitivity to AZT induced by a mutation in HIV-1 reverse transcriptase. Science 253: 1557–1559 (1991).CrossRefGoogle Scholar
  18. 18.
    J.E. Fitzgibbon, R.M. Howell,C.A. Haberzettl, S. J. Sperber, D.J., Gocke, and D.T. Dubin. ased susceptibility to 2’,3’-dideoxycytidine. Antimicrob. Agents Chemother. 36: 153–157 (1992).Google Scholar
  19. 19.
    A. Jacobo-Molina, J. Ding, R.G. Nanni, A.D. Clark, Jr., X. Lu, C. Tantillo, R.L. Williams, G. Kamer, A.L. Ferris, P. Clark, A. Hizi, S.H. Hughes, and E. Arnold. Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 A resolution shows bent DNA. Proc. Natl. Acad. Sci. U.S.A. 90: 6320–6324 (1993).PubMedCrossRefGoogle Scholar
  20. 20.
    Q. Gao, Z. Gu, M.A. Parniak, J. Cameron, N. Cammack, C. Boucher, and M.A. Wainberg. The same mutation that encodes low-level human immunodeficiency virus type 1 resistance to 2,’3’-dideoxyinosine and 2’,3’-dideoxycytidine confers high-level resistance to the (3/4)enantiomer of 2’,3’-dideoxy-3’-thiacytidine. Antimicrob. Agents Chemother. 37: 1390–1392 (1993).PubMedCrossRefGoogle Scholar
  21. 21.
    R.F. Schinazi, R.M. Lloyd, Jr., M.H. Nguyen, D.L. Cannon, A. McMillan, N. Ilksoy, C.K. Chu, D.C. Liotta, H.Z. Bazmi, and J.W. Mellors. Characterization of human immunodeficiency viruses resistant to oxathiolane-cytosine nucleosides. Antimicrob. Agents Chemother. 37: 875–881 (1993).PubMedCrossRefGoogle Scholar
  22. 22.
    M. Tisdale, S.D. Kemp, N.R. Parry, and B.A. Larder. Rapid in vitro selection of human immunodeficiency virus type 1 resistant to 3’-thiacytidine inhibitors due to a mutation in the YMDD region of reverse transcriptase. Proc. Natl. Acad. Sci. U.S.A. 90: 5653–5656 (1993).PubMedCrossRefGoogle Scholar
  23. 23.
    Z. Gu, Q. Gao, M. Li, M.A. Parniak, and M.A. Wainberg. A novel mutation in the human immunodeficiency virus type 1 reverse transcriptase gene that encodes resistance to 2’,3’-dideoxyinosine and cross-resistance to 2’,3’-dideoxycytidine. J. Virol. 66: 7128–7135 (1992).PubMedGoogle Scholar
  24. 24.
    L.A. Kohlstaedt, J. Wang, J.M. Friedman, P.A. Rice, and T.A. Steitz. Crystal structure at 3.5A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science 256: 1783–1790 (1992).PubMedCrossRefGoogle Scholar
  25. 25.
    R. Pauwels, K. Andries, D. Desmyter, D. Schols, M.J. Kukla, H.J. Breslin, A. Raeymaeckers, J. Van Gelder, R. Woestenborghs, J. Heykants, K. Schellekins, M.A.C. Janssen, E. De Clercq, and P.A.J. Janssen. Potent and selective inhibition of HIV-1 replication in vitro by a novel series of TIBO derivatives. Nature 343: 470–474 (1990).PubMedCrossRefGoogle Scholar
  26. 26.
    E.L. White, R.W. Buckheit, L.J. Ross, J.M. Germany, K. Andries, R. Pauwels, P.A.J. Janssen, W.M. Shannon, and M.A. Chirigos. A TIBO derivative, R82913, is a potent inhibitor of HIV-1 reverse transcriptase with heteropolymer templates. Antiviral Res. 16: 257–266 (1991).PubMedCrossRefGoogle Scholar
  27. 27.
    V.J. Merluzzi, K.D. Hargrave, M. Labadia, K. Grozinger, M. Skoog, J.C. Wu, C.-K. Shih, K. Eckner, S. Hattox, J. Adams, A.S. Rosenthal, R. Faanes, R.J. Eckner, R.A. Koup, and J. L. Sullivan. Inhibition of HIV-1 replication by a nonnucleoside reverse transcriptase inhibitor. Science 250: 1411–1413 (1990).PubMedCrossRefGoogle Scholar
  28. 28.
    M.E. Goldman, J.H. Nunberg, J.A. O’Brien, J.C. Quintero, W.A. Schleif, K.F. Freund, S.L. Gaul, W.S. Saari, J.S. Wai, J.M. Hoffman, P.S. Anderson, D.J. Hupe, E.A. Emini, and A.M. Stern. Pyridinone derivatives: specific human immunodeficiency virus type 1 reverse transcriptase inhibitors with antiviral activity. Proc. Natl. Acad. Sci. U.S.A. 88: 6863–6867 (1991).PubMedCrossRefGoogle Scholar
  29. 29.
    T.J. Dueweke, S.M. Poppe, D.L. Romero, S.M. Swaney, A.G. So, K.M. Downey, I.W. Althaus, F. Reusser, M. Busso, L. Resnick, D.L. Mayers, J. Lane, P.A. Aristoff, R.C. Thomas, and W.G. Tarpley. U-90152, a potent inhibitor of human immunodeficiency virus type 1 replication. Antimicrob. Agents Chemother. 37: 1127–1131 (1993).PubMedCrossRefGoogle Scholar
  30. 30.
    R.T. Davey, R.L. Dewar, G.F. Reed, M.B. Vasudevachari, M.A. Polis, J.A. Kovacs, J. Falloon, R.E. Walker, H. Masur, S.E. Haneiwach, D.G. O’Neill, M.R. Decker, J.A. Metcalf, M.A. Deloria, O.L. Laskin, N. Salzman, and H.C. Lane. Plasma-viremia as a sensitive indicator of the antiretroviral activity of L-697,661. Proc. Natl. Acad. Sci. U.S.A. 90: 5608–5612 (1993).PubMedCrossRefGoogle Scholar
  31. 31.
    M.S. Saag, W.A. Emini, O.L. Laskin, J. Douglas, W.I. Lapidus, W.A. Schleif, R.J. Whitley, V.W. Byrnes, C. Hildebrand, J.C. Kappes, K.W. Anderson, F.E. Massari, G.M. Shaw, and the L-697,661 working group. A short clinical trial of L697,661, A nonnucleoside inhibitor of HIV-1 reverse transcriptase. New Engl. J. Med. 329: 1065–1072 (1993).Google Scholar
  32. 32.
    K.A. Cohen, J. Hopkins, R.H. Ingraham, C. Pargellis, J.C. Wu, D.E.H. Palladino, P. Kinkade, T.C. Warren, S. Rogers, J. Adams, P.R. Farina, and P.M. Grob. Characterization of the binding site for nevirapine (BI-RG-587), a nonnucleoside inhibitor of human immunodeficiency virus type 1 reverse transcriptase. J. Biol. Chem. 22: 14670–14674 (1991).Google Scholar
  33. 33.
    J.H. Nunberg, W.A. Schleif, E.J. Boots, J.A. O’Brien, J.C. Quintero, J.M. Hoffman, E.A. Emini, and M.E. Goldman. Viral resistance to human immunodeficiency virus type 1-specific pyridinone reverse transcriptase inhibitors. J. Virol. 65: 4887–4892 (1991).PubMedGoogle Scholar
  34. 34.
    D. Richman, C.-K. Shih, I. Lowy, J. Rose, P. Prodanovich, S. Goff, and J. Griffin. Human immunodeficiency virus type 1 mutants resistant to nonnucleoside inhibitors of reverse transcriptase arise in cell culture. Proc. Natl. Acad. Sci. U.S.A. 88: 1 124 1–1 1245 (1991).Google Scholar
  35. 35.
    V.V. Sardana, E.A. Emini, L. Gotlib, D.J. Graham, D.W. Lineberger, W.J. Long, A.J. Schlabach, J.A. Wolfgang, and J.H. Condra. Functional analysis of HIV-1 reverse transcriptase amino acids involved in resistance to multiple nonnucleoside inhibitors. J. Biol. Chem. 267: 17526–17530 (1992).Google Scholar
  36. 36.
    A. Bacolla, C.K. Shih, J.M. Rose, G. Piras, T.C. Warren, C.A. Grygon, R.H. Ingraham, R.C. Cousins, D.J. Greenwood, D. Richman, Y.C. Cheng, and J.A. Griffin. Amino acid substitutions in HIV-1 reverse transcriptase with corresponding residues from HIV-2. J. Biol. Chem. 22: 16571–16577 (1993).Google Scholar
  37. 37.
    J. Balzarini, A. Karlsson, M.J. Perez-Perez, M.J. Camarasa, W.G. Tarpley, and E. DeClercq. Treatment of human immunodeficiency virus type 1 (HIV-1)-infected cells with combinations of HIV-1-specific inhibitors results in a different resistance pattern than does treatment with a single-drug therapy. J. Virol. 67: 5353–5359 (1993).PubMedGoogle Scholar
  38. 38.
    V.W. Byrnes, V.V. Sardana, W.A. Schleif, J.H. Condra, J.A. Waterbury, J.A. Wolfgang, W.J. Long, C.L. Schneider, A.J. Schlabach, B.S. Wolanski, D.J. Graham, L. Gotlib, A. Rhodes, D.L. Titus, E. Roth, O.M. Blahy, J.C. Quintero, S. Staszewski, and E.A. Emini. Comprehensive mutant enzyme and viral variant assessment of human immunodeficiency virus type 1 reverse transcriptase resistance to nonnucleoside inhibitors. Antimicrob. Agents Chemother. 37: 1576–1579 (1993).PubMedCrossRefGoogle Scholar
  39. 39.
    T.J. Dueweke, T. Pushkarskaya, S.M. Poppe, S.M. Swaney, J.Q. Zhao, I.S.Y. Chen, M. Stevenson, and W.G. Tarpley. A mutation in reverse transcriptase of bis(heteroaryl)piperazine-resistant human immunodeficiency virus type 1 confers increased sensitivity to other nonnucleoside inhibitors. Proc. Natl. Acad. Sci. U.S.A. 90: 4713–4717 (1993).PubMedCrossRefGoogle Scholar
  40. 40.
    J.W. Mellors, G.-J. Im, E. Tramontano, S.R. Winker, D.J. Medina, G.E. Dutschman, H.Z. Bazmi, G. Piras, C.J. Gonzalez, and Y.-C. Cheng. A single conservative amino acid substitution in the reverse transcriptase of human immunodeficiency virus-1 confers resistance to (+)-(5S)-4,5,6,7-tetrahydro-5methyl-6-(3-methyl-2-butenyl)imidazo[4,5,1 jk][I,41benzodiazepin-2(1H)-thione (TIBO R82150). Mol. Pharmacol. 43: 11–16 (1993).PubMedGoogle Scholar
  41. 41.
    B.A. Larder. 3’-Azido-3’-deoxythymidine resistance suppressed by a mutation conferring human immunodeficiency virus type 1 resistance to nonnucleoside reverse transcriptase inhibitors. Antimicrob. Agents Chemother. 36: 2664–2669 (1992).PubMedCrossRefGoogle Scholar
  42. 42.
    E.A. Emini, D.J. Graham, L. Gotlib, J.H. Condra, V.W. Byrnes, and W.A. Schleif. HIV and multidrug resistance. Nature 364: 679 (1993).PubMedCrossRefGoogle Scholar
  43. 43.
    B.A. Larder, P. Kellam, and S.D. Kemp. Convergent combination therapy can select viable multi-drug resistant HIV-1 in vitro. Nature 365: 451–453 (1993).PubMedCrossRefGoogle Scholar
  44. 44.
    H.M. Temin. Retrovirus variation and reverse transcription: Abnormal strand transfers result in retrovirus genetic variation. Proc. Natl. Acad Sci. USA 90: 6900 (1993).Google Scholar
  45. 45.
    S.J. Clark, M.S. Saag, W.D. Decker, S. Campbell-Hill, J.L. Roberson, P.J. Veldkamp, J.C. Kappes, B.H. Hahn, and G.M. Shaw. High titers of cytopathic virus in plasma of patients with symptomatic primary HIV-1 infection. New Engl. J. Med. 324: 954 (1991).PubMedCrossRefGoogle Scholar
  46. 46.
    M.S. Saag, M.J. Crain, W.D. Decker, S. Campbell-Hill, S. Robinson, W.E. Brown, M. Leuther, R.J. Whitley, B.H. Hahn, and G.M. Shaw. High-level viremia in adults and children infected with human immunodeficiency virus: Relation to disease stage and CD4’ lymphocyte levels. J. Inf. Dis. 164: 72 (1991).CrossRefGoogle Scholar
  47. 47.
    M. Piatak, M.S. Saag, L.C. Yang, S.J. Clark, J.C. Kappes, K.C. Luk, B.H. Hahn, G.M. Shaw, and J.D. Lifson. High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR. Science 259: 1749 (1993).PubMedCrossRefGoogle Scholar
  48. 48.
    S.M. Schnittman, J.J. Greenhouse, H.C. Lane, P.F. Pierce, and A.S. Fauci. Frequent detection of HIV-1-specific mRNAs in infected individuals suggests ongoing active viral expression in all stages of disease. AIDS Res. Human Retroviruses 7: 361 (1991).CrossRefGoogle Scholar
  49. 49.
    G. Pantaleo, C. Graziosi, J.F. Demarest, L. Butini, M. Montroni, C.H. Fox, J.M. Orenstein, D.P. Kotler, and A.S. Fauci. HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature 362: 355 (1993).PubMedCrossRefGoogle Scholar
  50. 50.
    G. pantaleo, C. Graziosi, J.F. Demarest, L. Butini, M. Montroni, C.H. Fox, J.M. Orenstein, D.P. Kotler, and A.S. Fauci. HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature 362: 355 (1993).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Emilio A. Emini
    • 1
  1. 1.Department of Antiviral ResearchMerck Research LaboratoriesWest PointUSA

Personalised recommendations