Antibiotic-Resistance in Streptococcus Pneumoniae

  • Karen Krisher
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 390)


Streptococcus pneumoniae was first identified as an infectious agent in the late nineteenth century. Subsequently, pneumococci have been established as the cause of a wide spectrum of diseases including pneumonia, otitis media, sinusitis, bacteremia and meningitis, as well as more unusual clinical complications such as pericarditis, endocarditis, arthritis and peritonitis.1,2 S. pneumoniae is a leading cause of community-acquired pneumonia in adults and meningitis in pediatric populations.3,4,5


Minimum Inhibitory Concentration Streptococcus Pneumoniae Acute Otitis Medium Antimicrob Agent Pneumococcal Meningitis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.A. Mufson. Streptococcus pneumoniae. in “Principles and practices in infectious diseases” Mandell, G.L., Douglas, R.G., and Bennett, J.E. eds. Churchill Livingstone Inc., NY, NY (1991).Google Scholar
  2. 2.
    D.M. Musher. Infections caused by Streptococcus pneumoniae: clinical spectrum, pathogenesis, immunity and treatment. Clin Infect Dis. 14: 801–807 (1992).PubMedCrossRefGoogle Scholar
  3. 3.
    T.J. Marrie. Community-acquired pneumonia. Clin Infect Dis. 18: 501–515 (1994).PubMedCrossRefGoogle Scholar
  4. 4.
    B.M. Gray and H.C. Dillon. Clinical and epidemiologic studies of pneumococcal infection in children. Pediatr Infect Dis. 5: 201–207 (1986).PubMedCrossRefGoogle Scholar
  5. 5.
    J. Ward. Antibiotic-resistant Streptococcus pneumoniae; clinical and epidemiologic aspects. Rev Infect Dis. 3: 254–66. 1981.PubMedCrossRefGoogle Scholar
  6. 6.
    P.C. Appelbaum. World-wide development of antibiotic resistance in pneumococci. Eur J Clin Microbiol. 6: 367–367 (1987).PubMedCrossRefGoogle Scholar
  7. 7.
    D. Hansman, L. Devitt, H. Miles, and I. Riley. Pneumococci relatively insensitive to penicillin from Australia and New Guinea. Med J Aust. 2: 353–356 (1974).PubMedGoogle Scholar
  8. 8.
    I. Niragi, G.P. Kirkpatrick, and S. Kabins. Relapsing pneumococcal meningitis: isolation of an organism with decreasing susceptibility to penicillin G. J Pediatr. 85: 671–673 (1974).CrossRefGoogle Scholar
  9. 9.
    P.C. Appelbaum, A. Bhamjee, J.N. Scragg, A.F., Hallett, A.J. Bowen, and R.C. Cooper. Streptococcus pneumoniae resistant to penicillin and chloramphenicol. Lancet. 2: 995–997 (1977).Google Scholar
  10. 10.
    M.R. Jacobs, H.J. Koornhof, R.M. Robins-Browne et al. Emergence of multiply resistant pneumococci. N Engl J Med. 299: 735–40. (1978).PubMedCrossRefGoogle Scholar
  11. 11.
    F. Baquero, J. Martinez-Beltran, and E. Loza. A review of antibiotic resistance patterns of Streptococcus pneumoniae in Europe. J Antimicrob Chemotherap. 28 (Suppl. C): 31–38 (1991).CrossRefGoogle Scholar
  12. 12.
    G.E. Schultze, S.L. Kaplan, and R.F. Jacobs. Resistant pneumococcus: a worldwide problem. Infection. 22: 233–237. (1994).CrossRefGoogle Scholar
  13. 13.
    P.C. Appelbaum. Antimicrobial resistance in Streptococcus pneumoniae: An Overview. Clin Infect Dis. 15: 77–83. (1992).PubMedCrossRefGoogle Scholar
  14. 14.
    A. Marton. Pneumococcal antimicrobial resistance: the problem in Hungary. Clin Infect Dis. 15: 106–111. (1992).PubMedCrossRefGoogle Scholar
  15. 15.
    K.P. Klugman and H.J. Koornhof. Drug resistance patterns and serogroups or serotypes of pneumococcal isolates from cerebrospinal fluid or blood, 19791986. J Infect Dis. 158: 956–64. (1988).PubMedCrossRefGoogle Scholar
  16. 16.
    H.J. Koornhof, A. Wasas, and K. Klugman. Antimicrobial resistance in Streptococcus pneumoniae: a South African perspective. Clin Infect Dis. 15: 8494 (1992).CrossRefGoogle Scholar
  17. 17.
    J.R. Linares, R. Pallares, T. Alonso. J.L. Perez, J. Ayats, F. Gudiol, P.F. Viladrich, and R. Martin. Trends in antimicrobial resistance of clinical isolates of Streptococcus pneumoniae in Bellvitge Hospital, Barcelona, Spain (1979–1990). Clin Inf Dis. 15: 99–105. (1992).CrossRefGoogle Scholar
  18. 18.
    J. Linares, C. Latorre, C. Ardanuy, C. Munoz, F. Tubau, R. Martin. Program abstr 34th Intersci. Conf Antimicrob Agents Chemother, abstr. no. E6. page 48 (1994).Google Scholar
  19. 19.
    P.A. Geslin, A. Buu-Hoi, A. Fremaus, and J.F. Acar. Antimicrobial resistance in Streptococcus pneumoniae: an epidemiological survey in France, 1970–1990. Clin Infect Dis. 15: 95–8 (1992).PubMedCrossRefGoogle Scholar
  20. 20.
    G. Lenoir, P. Gehanno, I. Boucot, and P. Berche. Program Abstr. 34th Intersci. Conf Antimicrob Agents Chemother, abstr. no. J 62. page 70 (1994).Google Scholar
  21. 21.
    R.R. Reinert, A. Queck, A. Karfhold, M. Kresken, and R. Lutticken. Antibiotic Sensitivity of Streptococcus pneumoniae isolated from normally sterile body sites: first results of a multicenter study in Germany. Infection. 22: 113 (1994).PubMedCrossRefGoogle Scholar
  22. 22.
    R.N. Jones, E.N. Kehrberg, M.E. Erwin, S.C. Anderson, and the fluoroquinolone research surveillance group. Prevalence of important pathogens and resistance. Diag Microbiol Infect Dis. 19: 203–215 (1994).CrossRefGoogle Scholar
  23. 23.
    R.F. Breimer, J.C. Butler, F.C. Tenover, J.A. Elliott, and R.R. Facklam. Emergence of drug-resistant pneumococcal infections in the United States. JAMA. 271: 1831–1835. (1994).CrossRefGoogle Scholar
  24. 24.
    C. Thornsberry, J.M. Swenson, and R.R. Facklam. Antimicrobial resistance in pneumococci from the U.S.A. Are there trends?. Antimicrob Newsletter. 5: 2223. (1988).Google Scholar
  25. 25.
    J.O. Hendley, M.A. Sande, Stewart P.M. et al. Spread of Streptococcus pneumoniae in families. 1. Carriage rates and distribution of types. J Infect Dis. 132: 55–61. (1975).PubMedCrossRefGoogle Scholar
  26. 26.
    J.M. Gwaltney, M. Sande, R. Austrian, R. et al. Spread of Streptococcus pneumoniae in families. II. Relation of transfer of Streptococcus pneumoniae to incidence of colds and serum antibody. J Infect Dis. 132: 62–8. (1975).PubMedCrossRefGoogle Scholar
  27. 27.
    B.M. Gray, G.M. Converse, and H.C. Dillon. Epidemiologic studies of Streptococcus pneumoniae in infants: acquisition, carriage, and infection during the first 24 months of life. J Infect Dis. 142: 923–93. 1980.PubMedCrossRefGoogle Scholar
  28. 28.
    F.W. Henderson, P. H. Gilligan, K. Wait, and D. A. Goff. Nasopharyngeal carriage of antibiotic-resistant pneumococci by children in group day care. J Infect Dis. 157: 256–263. (1988).PubMedCrossRefGoogle Scholar
  29. 29.
    J. Ward. Antibiotic-resistant Streptococcus pneumoniae: clinical and epidemiologic aspects. Rev Infect Dis. 3: 254–66. (1981).PubMedCrossRefGoogle Scholar
  30. 30.
    A.M. Rauch, M. O’Ryan, R. Van, and L.K. Pickering. Invasive disease due to multiply resistant Streptococcus pneumoniae in a Houston, Texas, day-care center. Amer J Dis Child. 144: 923–927. (1990).PubMedGoogle Scholar
  31. 31.
    J.M. Nava, F. Bella, J. Garau, J. Lite, M. Morera, C. Marti, D. Fontanals, B. Font, F. Pineda, S. Uriz, F. Deulofeu, A. Caleron, P. Duran, M. Grau, and A. Agudo. Predictive factors for invasive disease due to penicillin-resistant Streptococcus pneumoniae: A population-based study. Clin Infect Dis. 19: 884–90, (1994).PubMedCrossRefGoogle Scholar
  32. 32.
    R. Pallares, F. Gudiol, J. Linares, J. Ariza, G. Rufi, L. Murgui, J. L. Dorca, and P. F. Viladrich. Risk factors and response to antibiotic therapy in adults with bacteremic pneumonia caused by penicillin-resistant pneumococci. N Engl J Med. 317: 18–22. (1987).PubMedCrossRefGoogle Scholar
  33. 33.
    M.E. Garcia-Leoni, E. Cercenado, P. Rodeno, J.C.L. Bernaldo de Quiros, D. Martinez-Hernanday, and E. Bouza. Susceptibility of Streptococcus pneumoniae to penicillin: a prospective microbiological and clinical study. Clin Infect Dis. 14: 427–435 (1992).PubMedCrossRefGoogle Scholar
  34. 34.
    Streptococcus pneumoniae in “Zinsser Microbiology” 20th ed. Joklik W. K. et al. eds. Appleton and Lange, East Norwalk, Connecticut. (1992).Google Scholar
  35. 35.
    R.R. Facklam and J.A. Washington. Streptococcus and related catalase-negative gram-positive cocci in “Manual of Clinical Microbiology”, A. Balows et al. ed American Society of Microbiology, Washington, D.C. (1991).Google Scholar
  36. 36.
    J.C. Paton. Pathogenesis of pneumococcal disease. Cur Opin Infect Dis. 6: 363–368, (1993).Google Scholar
  37. 37.
    Clinical Microbiology Procedures Manual. Identification of catalase-negative aerobic gram-positive cocci. American Society of Microbiology, Washington, D.C. (1992).Google Scholar
  38. 38.
    R.N. Jones and D.C. Edson. special topics in antimicrobial susceptibility testing: test accuracy against methicillin-resistant Staphylococcus aureus, pneumococci, and the sensitivity of (3-lactamase methods. Am J Clin Pathol. 4 (Suppl.): 609–614 (1983).Google Scholar
  39. 39.
    National Committee for Clinical Laboratory Standards. 1993. Performance standards for antimicrobial disk susceptibility tests. Standard M2–A5. National Committee for Clinical Laboratory Standards, Villanova, Pa. (1993).Google Scholar
  40. 40.
    J.H. Jorgensen et al. Program Abstr. 33rd. Intersci. Conf. Antimicrob. Agents Chemother., abstr. no. 262, p. 167, 1993.Google Scholar
  41. 41.
    J.H. Jorgensen. Detection of antimicrobial resistance in Streptococcus pneumoniae by use of standardized susceptibility testing methods and recently developed interpretive criteria. Clin Microbiol Newsletter. 16: 97–101. (1994).CrossRefGoogle Scholar
  42. 42.
    NCCLS broth dilution National Committee for Clinical Laboratory Standards. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard M7–A3. National Committee for Clinical Laboratory Standards, Villanova, Pa. (1993).Google Scholar
  43. 43.
    M.R. Jacobs, H.J. Koornhof, R.M. Robins-Browne, C.M. Stevenson, Z.A. Vermacek, I. Freiman, G.B. Miller, M.A. Witcomb. M. Isaacson, J. I. Ward and R. Austrian. Emergence of multiply resistant pneumococci. N Engl J Med. 299: 735–740 (1978).PubMedCrossRefGoogle Scholar
  44. 44.
    K. Carroll, S. Cohen, B. Saxon, and L. Hamilton. Failure of Micro Media FOX microdilution system to detect decreased susceptibility of Streptococcus pneumoniae to penicillin. J Clin Microbiol. 29: 2651–2652 (1991).PubMedGoogle Scholar
  45. 45.
    I.R. Friedland, S. Shelton, M. Paris, S. Rinderknecht, S. Ehrett, K. Krisher, and G. H. McCracken, Jr. Dilemmas in diagnosis and management of cephalosporin- resistant Streptococcus pneumoniae meningitis. Pediatr Infect Dis J. 12: 196–200.Google Scholar
  46. 46.
    M.R. Jacobs. Treatment and diagnosis of infections caused by drug-resistant Streptococcus pneumoniae. Clin Infect Dis. 15: 119–127 (1992).PubMedCrossRefGoogle Scholar
  47. 47.
    J.H. Jorgensen, A. W. Howell, and L.A. Maher. Quantitative antimicrobial susceptibility testing of Haemophilus influenzae and Streptococcus pneumoniae by using the E-test. J Clin Microbiol. 29: 109–114 (1990).Google Scholar
  48. 48.
    M.R. Jacobs, S. Bajaksouzian, P.C. Appelbaum, and A. Bolstrom. Evaluation of the E-test for susceptibility testing of pneumococci. Diagn Microbiol Infect Dis. 15: 473–478 (1992).PubMedCrossRefGoogle Scholar
  49. 49.
    R.B. Clark, O. Giger, and J.E. Mortensen. Comparison of susceptibility testing methods to detect penicillin-resistant Streptococcus pneumoniae. Diagn Microbiol Infect Dis. 17: 213–217 (1993).PubMedCrossRefGoogle Scholar
  50. 50.
    E. Macias, E.A., E. O. Mason, H. Y. Ocera, and M.R. LaRocco. Comparison of E test with standard broth microdilution for determining antibiotic susceptibilities of penicillin-resistant strains of Streptococcus pneumoniae. J Clin Microbiol. 32: 430–432 (1994).Google Scholar
  51. 51.
    J.H. Ngui-Yen, E. A. Bryce, C. Porter, and J.A. Smith. Evaluation of the E test by using selected gram-positive bacteria. J Clin Microbiol. 30: 2150–2152 (1992).Google Scholar
  52. 52.
    J.H. Jorgensen, M. J. Ferraro, M. L. McElmeel, J. Spargo, J. M. Swenson, and F.C. Tenover. Detection of penicillin and extended-spectrum cephalosporin resistance among Streptococcus pneumoniae clinical isolates by use of the E test. J Clin Microbiol. 32: 159–163 (1994).PubMedGoogle Scholar
  53. 53.
    K. Krisher and A. Linscott. Comparison of three commercial MIC systems, E test, Fastidious Antimicrobial Susceptibility Panel, and FOX Fastidious Panel, for confirmation of penicillin and cephalosporin resistance in Streptococcus pneumoniae. 32: 2242–2245 (1994).Google Scholar
  54. 54.
    National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial susceptibility testing. Informational Supplement. M100–S5. National Committee for Clinical Laboratory Standards, Villanova, Pa. (1994).Google Scholar
  55. 55.
    D.J. Waxman and J.L. Strominger. Penicillin-binding proteins and the mechanism of action of beta-lactam antibiotics. Annu. Rev. Biochem. 52: 825–869. 1983.PubMedCrossRefGoogle Scholar
  56. 56.
    R. Hakenbeck, S. Tomette, and N.F. Adkinson, Interaction of non-lytic betalactams with penicillin-binding proteins in Streptococcus pneumoniae. J Gen Microbiol. 133: 755–760 (1987).PubMedGoogle Scholar
  57. 57.
    E. Tuomanen and A. Tomasz. Mechanism of phenotypic tolerance of nongrowing pneumococci to beta-lactam antibiotics. Scand J Infect Dis (Suppl). 74: 102–112 (1991).Google Scholar
  58. 58.
    T.D. McDowell and K.E., Reed. Mechanism of penicillin killing in the absence of bacterial lysis. Antimicrob Agents Chemotherap. 33: 1680–1685 (1989).CrossRefGoogle Scholar
  59. 59.
    A. Markiewicz and A. Tomasz. Variation in penicillin-binding protein patterns of penicillin-resistant clinical isolates of pneumococci. J Clin Microbiol. 27: 405–410 (1989).PubMedGoogle Scholar
  60. 60.
    S. Handwerger and A. Tomasz. Alterations in kinetic properties of penicillin-binding proteins of penicillin-resistant Streptococcus pneumoniae. Antimicrob Agents Chemotherap. 30: 57–63 (1986).CrossRefGoogle Scholar
  61. 61.
    C.G. Dowson, A. Hutchison, N. Woodford, A.P. Johnson, R.C. George, and B.G. Spratt. Penicillin-resistant viridans streptococci have obtained altered penicillin-binding protein genes from penicillin-resistant strains of Streptococcus pneumoniae. Proc. Natl. Acad. Sci USA 87: 5858–5862 (1990).CrossRefGoogle Scholar
  62. 62.
    R. Munoz, J.M. Musser, M. Crain, D.E. Briles, A. Marton, A.J. Parkinson, U. Sorensen, and A. Tomasz. Geographic distribution of penicillin-resistant clones of Streptococcus pneumoniae: characterization by penicillin-binding protein profile, surface protein A typing, and multilocus enzyme analysis. Clin Infect Dis. 15: 112–118 (1992).PubMedCrossRefGoogle Scholar
  63. 63.
    R. Hakenbeck, L. Briese, Chalkley, H. Ellerbrok, R. Kalliokoski, C. Latorre, M. Leinonen, and C. Martin. Antigenic variation of penicillin-binding proteins from penicillin-resistant clinical strains of Streptococcus pneumoníae. J Infect Dis. 164: 313–319 (1991).PubMedCrossRefGoogle Scholar
  64. 64.
    G. Laible, B.G. Spratt, and R. Hakenbeck. Interspecies recombinations events during the evolution of altered PBP 2x genes in penicillin-resistant clinical isolates of Streptococcus pneumoniae. Mol Micro. 5: 1993–2002 (1991).CrossRefGoogle Scholar
  65. 65.
    A.M. Smith, K. P. Kingman, T.J. Coffey, and B.G. Spratt. Genetic diversity of penicillin-binding protein 2B and 2X genes from Streptococcus pneumoniae in South Africa. Antimicrob Agents Chemotherap. 37: 1938–1944.Google Scholar
  66. 66.
    R. Munoz, T. Coffey, M. Daniels, C.G. Dowson, G. Laible, J. Casal, R. Hakenbeck, M. Jacobs, J.M. Musser, B.G. Spratt, and A. Tomasz. Intercontinental spread of a multiresistant clone of serotype 23f Streptococcus pneumoniae. J. Infect. Dis. 164: 302–306 (1991).CrossRefGoogle Scholar
  67. 67.
    L.K. McDougal, R. Facklam, M. Reeves, S. Hunter, J.M. Swenson, B.C. Hill, and F.C. Tenover. Analysis of multiply antimicrobial-resistant isolates of Streptococcus pneumoniae from the United States. Antimicrob. Agents Chemotherap. 36: 2176–2184 (1992).CrossRefGoogle Scholar
  68. 68.
    R. Munoz., C.G. Dowson, M. Daniles, T.M. Coffey, C. Martin, R. Ilakenbeck, and B.G. Spratt. Genetics of resistance to third-generation ccphalosporins in clinical isolates of Streptococcus pneumoniae. Mol Micro. 6: 2461–2465 (1992).CrossRefGoogle Scholar
  69. 69.
    P. Moreillon, A. Markiewicz, S. Nachman, and A. Tomasz. Two bactericidal targets for penicillin in pneumococci: autolysis-dependent and autolysis-independent killing mechanisms. Antimicrob. Agents Chemotherap. 34: 33–39 (1990).CrossRefGoogle Scholar
  70. 70.
    H.H. Lui and A. Tomasz. Penicillin tolerance in multiply drug-resistant natural isolates of Streptococcus pneumoniae. J Infect Dis. 152: 365–372 (1985).CrossRefGoogle Scholar
  71. 71.
    M.G. Tauber and M.A. Sande. Pharmacodynamies of antibiotics in experimental bacterial meningitis: two sides to rapid bacterial killing in cerebrospinal fluid. Scand J Infect Dis (Suppl). 74: 173–178 (1990).Google Scholar
  72. 72.
    K.P. Klugman. Pneumococcal resistance to antibiotics. Clin Micrbiol Rev. 3: 171–196 (1990).Google Scholar
  73. 73.
    G.A. Jacoby and G.L. Archer. New mechanisms of bacterial resistance to antimicrobial agents. N Engl J Med. 324: 601–12 (1991).PubMedCrossRefGoogle Scholar
  74. 74.
    P.F. Viladrich, F. Gudiol, J. Linares, G. Rufi, J. Ariza, and R. Pallares. Characteristics and antibiotic therapy of adult meningitis due to penicillin-resistant pneumococci. Am J Med. 84: 839–46 (1988).PubMedCrossRefGoogle Scholar
  75. 75.
    M.M. Sloas, F.F. Barrett, P.J. Chesney, et al. Cephalosporin treatment failure in penicillin and cephalosporin-resistant Streptococcus pneumoniae meningitis. Pediatr Infect Dis J. 11: 662–6 (1992).PubMedGoogle Scholar
  76. 76.
    J.S. Bradley and J.D. Connor. Ceftriaxone failure in meningitis caused by Streptococcus pneumoniae with reduced susceptibility to beta-lactam antibiotics. Pediatr Infect Dis J. 10: 871–3 (1991).PubMedCrossRefGoogle Scholar
  77. 77.
    I.R. Friedland, S. Shelton, M. Paris, et al. Dilemmas in diagnosis and management of cephalosporin-resistant Streptococcus pneumoniae meningitis. Pediatr Infect Dis J. 12: 196–200 (1993).PubMedCrossRefGoogle Scholar
  78. 78.
    M.J. Catalan, J.M. Fernandez, A.Vazquez, E. Varela da Seijas, A. Suarez, and J.C.Bernaldo de Quiros. Failure of cefotaxime in the treatment of meningitis due to relatively resistant Streptococcus pneumoniae. Clin Infect Dis. 18: 766769. 1993.Google Scholar
  79. 79.
    C.C. John. Treatment failure with use of a third-generation cephalosporin for penicillin-resistant pneumococcal meningitis: case report and review. Clin Infect Dis. 18: 188–193 (1994).Google Scholar
  80. 80.
    I.R. Friedland and G.H. McCracken. Management of infections caused by antibiotic-resistant Streptococcus pneumoniae. N Engl J Med. 331: 377–382, (1994).PubMedCrossRefGoogle Scholar
  81. 81.
    I.R. Friedland and G.R. Istre. Management of penicillin-resistant pneumococcal infections. Pediatr Infect Dis. 11: 433–5 (1992).CrossRefGoogle Scholar
  82. 82.
    I.R. Friedland, M. Paris, S. Shelton, and G.H. McCracken. Time-kill studies of antibiotic combinations against penicillin-resistant and susceptible Streptococcus pneumoniae. J Antimicrob Chemotherap. 34: 213–237 (1994).CrossRefGoogle Scholar
  83. 83.
    P.F. Viladrich, F. Gudiol, F. Linares, R. Pallares, I. Sabate, G. Rufi, and J. Ariza. Evaluation of vancomycin for therapy of adult pneumococcal meningitis. Antimicrob Agents Chemotherap. 35: 2467–2472 (1991).CrossRefGoogle Scholar
  84. 84.
    P.F. Viladrich, F. Gudiol, J. Linares, et al. Evaluation of vancomycin for therapy of adult pneumococcal meningitis. Antimicrob Agents Chemotherap. 35: 2467–72 (1991).CrossRefGoogle Scholar
  85. 85.
    P.F. Viladrich, F. Gudiol, J. Linares, G. Rufi, J. Ariza, and R. Pallares. Characteristics and antibiotic therapy of adult meningitis due to penicillin-resistant pneumococci. Am J Med. 84: 839–46 (1988).PubMedCrossRefGoogle Scholar
  86. 86.
    I.R. Friedland and K.P. Klugman. Recurrent penicillin-resistant pneumococcal meningitis after chloramphenicol therapy. Pediatr Infect Dis J. 10: 705–707 (1991).PubMedCrossRefGoogle Scholar
  87. 87.
    I.R. Friedland and K.P. Klugman. Failure of chloramphenicol therapy in penicillin-resistant pneumococcal meningitis. Lancet. 339: 405–8 (1992).PubMedCrossRefGoogle Scholar
  88. 88.
    Y. Sakata, G.H. McCracken Jr., M.L Thomas, and K.D. Olsen. Pharmacokinetics and therapeutic efficacy of imipenem, ceftazidime, and ceftriaxone in experimental meningitis due to an ampicillin-and chloramphenicol-resistant strain of Haemophilus influenzae type b. Antimicrob Agents Chemotherap. 25: 29–32 (1984).CrossRefGoogle Scholar
  89. 89.
    J.O. Klein, R.D. Feigin, and G.H. McCracken, Jr. Report of the task force on diagnosis and management of meningitis. Pediatrics. 78: 959–982 (1986).PubMedGoogle Scholar
  90. 90.
    F. Asensi, D. Perez-Tamarit, M.C. Otero, et al. Imipenem-cilastatin therapy in a child with meningitis caused by a multiply resistant pneumococcus [letter]. Pediatr Infect Dis J. 8: 895 (1989).PubMedGoogle Scholar
  91. 91.
    V.K. Wong, H.T. Wright Jr., L.A. Ross, W.H. Mason, C.B. Inderlied, and K.S. Kim. Imipenem-cilastatin treatment of bacterial meningitis in children. Pediatr Infect Dis J. 10: 122–5 (1991).PubMedCrossRefGoogle Scholar
  92. 92.
    J.I. Ward and R.C. Moellering Jr. Susceptibility of pneumococci to 14 beta-lactam agents; comparison of strains resistant, intermediate-resistant, and susceptible to penicillin. Antimicrob Agents Chemotherap. 20: 204–7 (1981).CrossRefGoogle Scholar
  93. 93.
    D.J. Tweardy, M.R. Jacobs, and W.T. Speck. Susceptibility of penicillin-resistant pneumococci to eighteen antimicrobials: implications for treatment of meningitis. J Antimicrob Chemotherap. 12: 133–9 (1983).CrossRefGoogle Scholar
  94. 94.
    G.A. Pankuch, M.R. Jacobs, and P.C. Appelbaum. Susceptibilities of 200 penicillin-susceptible and resistant pneumococci to piperacillin, piperacillin-tazobactam, ticarcillin, ticarcillin-clavulanate, ampicillin, ampicillin-sulbactam, cetrazidime and ceftriaxone. Antimicrobial Agents Chemotherap. 38: 2905–2907 (1994).CrossRefGoogle Scholar
  95. 95.
    J.R. Lonks and A.A. Medeiros. High rate of erythromycin and clarithromycin resistance among Streptococcus pneumoniae isolates from blood cultures from Providence, R.I. Antimicrob Agents Chemotherap. 37: 1742–1745 (1993).CrossRefGoogle Scholar
  96. 96.
    Spangler, S.K. M. R. Jacobs, and P.C. Appelbaum. Susceptibilities of penicillin-susceptible and resistant strains of Streptococcus pneumoniae to RP 59500, vancomycin, erythromycin, PD 131628, Sparfloxacin, Tematloxacin, Win 57273, Ofloxacin, and Ciprofloxacin. Antimicrob Agents Chemotherap. 36: 856–859.Google Scholar
  97. 97.
    S.K. Spangler, M.R. Jacobs, and P.C. Appelbaum. In vitro susceptibilities of 185 penicillin-susceptible and resistant pneumococci to WY-49605, a new oral penem, compared with those to penicillin G, amoxicillin, amoxicillin-clavulanate, cefixime, cefaclor, cefpodoxime, cefuroxime, and cefdinir. Antimicrob Agents Chemotherap. 38:2902–2904. (1994).CrossRefGoogle Scholar
  98. 98.
    P. Gehanno, G. Lenoir, and P. Berche. In vivo correlates for Streptococcus pneumoniae penicillin resistance in acute otitis media. Antimicrob Agents Chemotherap. 39:271–272. (1995).CrossRefGoogle Scholar
  99. 99.
    M.M. Paris, S. Shelton, D. Krisher, and G.H. McCracken. Otitis media (OM) caused by penicillin and cephalosporin resistant Streptococcus preumoniae (P+CRSp). Pediatric Research. 35: 191A. (1994).Google Scholar
  100. 100.
    A.L. Barry, M.A. Pfaller, P. C. Fuchs, and R.R. Packer. In vitro activities of 12 orally administered antimicrobial agents against four species of bacterial respiratory pathogens from U.S. medical centers in 1992–1993. Antimicrob Agents Chemotherap. 38:2419–2425. (1994).CrossRefGoogle Scholar
  101. 101.
    B. Barry, M. Muffat-Joly, P. Gehanno, and J.J. Pocidalo. Effect of increased dosages of amoxicillin in treatment of experimental middle ear otitis due to penicillin-resistant Streptococcus pneumoniae. Antimicrob Agents Chemotherap. 37: 1599–1603.Google Scholar
  102. 102.
    P.J. Krause, N.J. Owens, C.H. Nightingale, J. J. Klimek., W.B. Lehnamm, and R. Quintilliani. Penetration of amoxicillin, cefaclor, erythromycin-sulfisoxazole, and trimethoprim-sulfamethoxazole into the middle ear fluid of patients with chronic serous otitis media. J Infect Dis. 145: 815–821 (1982).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Karen Krisher
    • 1
  1. 1.Children’s Medical Center of DallasUniversity of Texas Southwestern Medical CenterDallasUSA

Personalised recommendations