Advertisement

Antibiotics pp 265-272 | Cite as

Further Reading

  • Giancarlo Lancini
  • Francesco Parenti
  • Gian Gualberto Gallo

Keywords

Antimicrobial Chemotherapy Antimicrobial Drug Macrolide Antibiotic Fusidic Acid Aminoglycoside Antibiotic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

Chapter 1. The Antibiotics: An Overview

  1. Bérdy, J., Aslalos, A., Bostian, M., and McNitt, K., 1981, Handbook of Antibiotic Compounds, Vols. I—IX, CRC Press, Boca Raton, Fla.Google Scholar
  2. Bétina, V., 1983, The Chemistry and Biology of Antibiotics, Elsevier, Amsterdam.Google Scholar
  3. Bycroft, B. W. (ed.), 1988, Dictionary of Antibiotics and Related Substances, Chapman and Hall, London.Google Scholar
  4. Demain, A. L., and Solomon, N. A. (eds.), 1983, Antibiotics Containing the (3-Lactam Structure, Vols. 1 and 2, Springer-Verlag, Berlin.Google Scholar
  5. Hlavka, J. J., and Boothe, J. H., 1985, The Tetracyclines,Springer-Verlag, Berlin. Kleinkauf, H., and von Düren, H. (eds.), 1990, Biochemistry of Peptide Antibiotics,de Gruyter, Berlin.Google Scholar
  6. Laskin, A. I., and Lechevalier, H. A. (eds.), 1988, Handbook of Microbiology, 2nd ed., Vol. IX, Part A, CRC Press, Boca Raton, Fla.Google Scholar
  7. Morin, R. B., and Gorman, M. (eds.), 1982, Chemistry and Biology of 13-Lactam Antibiotics, Vols. 1 and 2, Academic Press, New York.Google Scholar
  8. Omura, S. (ed.), 1984, Macrolide Antibiotics, Academic Press, New York.Google Scholar
  9. Pape, H., and Rehm, H. J. (eds.), 1986, Biotechnology, Vol. 4: Microbial Products II, VCH Verlag, Weinheim.Google Scholar
  10. Umezawa, H., and Hooper, I. R. (eds.), 1982, Aminoglycoside Antibiotics, Springer-Verlag, Berlin.Google Scholar

Chapter 2. The Activity of Antibiotics

  1. Balows, A., Hausler, W. J., Hermann, K. L., lsemberg, H. D., and Shadomy, H. J., 1991, Manual of Clinical Microbiology, 5th ed., American Society for Microbiology, Washington, D.C.Google Scholar
  2. Collins, C. H., and Lyne, P. M., 1984, Microbiological Methods, 5th ed., Butterworths, London.Google Scholar
  3. Hewitt, W., and Vincent, S., 1989, Theory and Application of Microbiological Assay, Academic Press, New York.Google Scholar
  4. Lorian, V. (ed.), 1986, Antibiotics in Laboratory Medicine, 2nd ed., Williams and Wilkins, Baltimore.Google Scholar
  5. Phillips, I. (chairman), 1991, A guide to sensitivity testing, J. Antimicrob. Chemother. 27 (Suppl. D): 1.Google Scholar
  6. Reeves, D. S., Phillips, I., Williams, J. D., and Wise, R., 1978, Laboratory Methods in Antimicrobial Chemotherapy, Churchill, Livingstone, Edinburgh.Google Scholar

Chapter 3. The Mechanism of Action of Antibiotics

  1. Franklin, T. J., and Snow, G. A., 1989, Biochemistry of Antimicrobial Action, 4th ed., Chapman and Hall, London.Google Scholar
  2. Gale, E. F., Cundliffe, E., Reynolds, P. E., Richmond, M. H., and Waring, M. J., 1981, The Molecular Basis of Antibiotic Action, Wiley, New York.Google Scholar
  3. Greenwood, D., and O’Grady, F. (eds.), 1985, The Scientific Basis of Antimicrobial Chemotherapy, Cambridge University Press, London.Google Scholar
  4. Hahn, F. E. (ed.), 1979, Antibiotics V, Vols. 1 and 2, Springer-Verlag, Berlin.Google Scholar
  5. Hahn, F. E. (ed.), 1983, Antibiotics VI: Modes and Mechanisms of Microbial Growth Inhibitors, Springer-Verlag, Berlin.Google Scholar
  6. Kerridge, D., 1986, Mode of action of clinically important antifungal drugs, Adv. Microb. Physiol. 27: 1.PubMedGoogle Scholar
  7. Russel, A. D., and Chopra, I., 1990, Understanding Antibacterial Action and Resistance, Ellis Horwood, Chichester.Google Scholar
  8. Cannon, M., 1990, Agents which interact with ribosomal RNA and interfere with its function, in Comprehensive Medicinal Chemistry, Vol. 2 (P. G. Sammes, ed.), pp. 814838, Pergamon Press, Oxford.Google Scholar
  9. Drlica, K., 1984, Biology of bacterial deoxyribonucleic acid topoisomerases, Microbiol. Rev. 48: 273.PubMedGoogle Scholar
  10. Hertzberg, R. P., 1990, Agents interfering with DNA enzymes, in Comprehensive Medicinal Chemistry, Vol. 2 (P. G. Sammes, ed.), pp. 753–791Google Scholar
  11. Pergamon Press, Oxford. Hobbes, J. B., 1990, Purine and pyrimidine targets, in Comprehensive Medicinal Chemistry, Vol. 2 ( P. G. Sammes, ed.), pp. 299–332, Pergamon Press, Oxford.Google Scholar
  12. Nikaido, H., and Vaara, M., 1985, Molecular basis of bacterial outer membrane permeability, Microbiol. Rev. 45: 1.Google Scholar
  13. Sensi, P., and Lancini, G. C., 1990, Inhibitors of transcribing enzymes: Rifamycins and related agents, in Comprehensive Medicinal Chemistry, Vol. 2 ( P. G. Sammes, ed.), pp. 793–811, Pergamon Press, Oxford.Google Scholar
  14. Spratt, B. G., 1983, Penicillin-binding proteins and the future of ß-lactam antibiotics, J. Gen. Microbiol. 129: 1247.PubMedGoogle Scholar
  15. Tanaka, N., 1982, Mechanism of action of aminoglycosides antibiotics, in Aminoglycosides Antibiotics ( H. Humezawa and I. R. Hooper, eds.), pp. 221–266, Springer-Verlag, Berlin.Google Scholar
  16. Ward, J. B., 1990, Cell wall structure and function, in Comprehensive Medicinal Chemistry, Vol. 2 ( P. G. Sammes, ed.), pp. 553–607, Pergamon Press, Oxford.Google Scholar

Chapter 4. Resistance of Microorganisms to Antibiotics

  1. Bryan, L. E. (ed.), 1984, Antimicrobial Drug Resistance, Academic Press, New York. Bryan, L. E. (ed.), 1989, Microbial Resistance to Drugs, Springer-Verlag, Berlin.Google Scholar
  2. Bush, K., 1989, Characterization of ß-lactamases, Antimicrob. Agents Chemother. 33: 259.PubMedGoogle Scholar
  3. Bush, K., 1989, Classification of ß-lactamases 1, 2a, 2b, and 2b’, Antimicrob. Agents Chemother. 33: 264.PubMedGoogle Scholar
  4. Bush, K., 1989, Classification of 13-lactamases 2c, 2d, 2e, 3, and 4, Antimicrob. Agents Chemother. 33: 271.PubMedGoogle Scholar
  5. Foster, T. J., 1983, Plasmid determined resistance to antimicrobial drugs and toxic metal ions in bacteria, Microbiol. Rev., 47: 361.PubMedGoogle Scholar
  6. Franklin, T. J., and Snow, G. A., 1989, Biochemistry of Antimicrobial Action, 4th ed., Chapman and Hall, London.Google Scholar
  7. Leclerq, R., and Courvalin, P., 1989, Bacterial resistance to macrolide, lincosamide, streptogramin antibiotics by target modification, Antimicrob. Agents Chemother. 35: 735.Google Scholar
  8. Lyon, B. R., and Scurray, R., 1987, Antimicrobial resistance in S. aureus: Genetic basis, Microbiol. Rev., 51: 88.Google Scholar
  9. Quesnel, L. B., 1990, Resistance and tolerance to antimicrobial drugs, in Comprehensive Google Scholar
  10. Medicinal Chemistry,Vol. 2 (P. G. Sammes, ed.), pp. 89–122, Pergamon Press, Oxford. Russel, A. D., and Chopra, I, 1990, Understanding Antibacterial Action and Resistance,Ellis Horwood, Chichester.Google Scholar

Chapter 5. Activity of Antibiotics in Relation to Their Structure

  1. Betina, V., 1983, The Chemistry and Biology of Antibiotics, Elsevier, Amsterdam.Google Scholar
  2. Kucers, A., and McBennet, N., 1987, The Use of Antibiotics, 4th ed., Heinemann Medical Books, London.Google Scholar
  3. Brown, A. G., Pearson, M. J., and Southgate, R., 1990, Other ß-lactam agents, in Comprehensive Medicinal Chemistry, Vol. 2 ( C. Hansch, P. G. Sammes, and J. B. Taylor, eds.), pp. 655–702, Pergamon Press, Oxford.Google Scholar
  4. Demain, A. L., and Solomon N. A. (eds.), 1983, Antibiotics Containing the 3-Lactam Structure, Vols. 1 and 2, Springer-Verlag, Berlin.Google Scholar
  5. Hlavka, J. J., and Boothe, J. H., 1985, The Tetracyclines, Springer-Verlag, Berlin.Google Scholar
  6. Kirst, H., and Sides, G. D., 1989, New directions for macrolide antibiotics: Structural modifications and in vitro activities, Antimicrob. Agents Chemother. 33: 1413.PubMedGoogle Scholar
  7. Lancini, G. C., and Cavalleri, B., 1990, Glycopeptide antibiotics of the vancomycin group, in Biochemistry of Peptide Antibiotics (H. Kleinkauf and H. von Dören, eds.), pp. 159–178, de Gruyter, Berlin.Google Scholar
  8. Morin, R. B., and Gorman, M. (eds.), 1982, Chemistry and Biology of ß-Lactam Antibiotics, Vols. 1 and 2, Academic Press, New York.Google Scholar
  9. Neu, H. C., 1986, (3-Lactam antibiotics: Structural relationships affecting in vitro activity and pharmacologie properties, Rev. Infect. Dis. 8: S237.Google Scholar
  10. Newall, C. E., and Hallam, P. D., 1990, (3-Lactam antibiotics: Penicillins and cephalosporins, in Comprehensive Medicinal Chemistry, Vol. 2 (C. Hansch, P. G. Sammes, and J. B. Taylor, eds.), pp. 609–653, Pergamon Press, Oxford.Google Scholar
  11. Omura, S. (ed.), 1984, Macrolide Antibiotics, Academic Press, New York.Google Scholar
  12. Sensi, P., and Lancini, G. C., 1990, Inhibitors of transcribing enzymes: Rifamycins and related agents, in Comprehensive Medicinal Chemistry, Vol. 2 ( C. Hansch, P. G. Sammes, and J. B. Taylor, eds.), pp. 793–811, Pergamon Press, Oxford.Google Scholar
  13. Tsukagoshi, S., Takeuci, T., and Umezawa, H., 1986, Antitumor substances in Biotechnology, Vol. 4 (H. Pape and H. J. Rehm, eds.), pp. 509–530Google Scholar
  14. VCH Verlag, Weinheim. Umezawa, H., and Hooper, I. R. (eds.), 1982, Aminoglycoside Antibiotics, Springer-Verlag, Berlin.Google Scholar
  15. von Dören, H., 1990, Compilation of peptide structures. A biogenetic approach, in Biochemistry of Peptide Antibiotics (H. Kleinkauf and H. von Dören, eds.), pp. 411–507, de Gruyter, Berlin.Google Scholar
  16. Ward, J. B., 1990, Cell wall structure and functions, in Comprehensive Medicinal Chemistry, Vol. 2 ( C. Hansch, P. G. Sammes, and J. B. Taylor, eds.), pp. 553–607, Pergamon Press, Oxford.Google Scholar
  17. Weiss, R. B., Sarosy, G., Clagett-Carr, K., Russo, M., and Leyland-Jones, B., 1986, Anthracycline analogues: The past, present, and future, Cancer Chemother. Pharmacol. 18: 185.PubMedGoogle Scholar

Chapter 6. Biosynthesis and Genetics of Antibiotic Production

  1. Baltz, R. H., Hegeman, G. D., and Skatrud, P. L. (eds.), 1993, Industrial Microorganisms: Basic and Applied Molecular Genetics, American Society for Microbiology, Washington, D.C.Google Scholar
  2. Corcoran, J. W. (ed.), 1981, Antibiotics IV: Biosynthesis, Springer-Verlag, Berlin. Floss, H. G., and Beale, J. M., 1989, Biosynthetic studies on antibiotics, Angew. Chem. Int. Ed. Engl. 28: 146.Google Scholar
  3. Hershberger, C. L., Queener, S. W., and Hegeman, G. (eds.), 1989, Genetics and Molecular Biology of Industrial Microorganisms, American Society for Microbiology, Washington, D.C.Google Scholar
  4. Horinouchi, S., and Beppu, T., 1992, Autoregulatory factors and communication in actinomycetes, Annu. Rev. Microbial. 46: 377.Google Scholar
  5. Lancini, G. C., and Lorenzetti, R., 1993 Biotechnology of Antibiotics and Other Microbial MetabolitesPlenum Press, New York. Google Scholar
  6. Pape, H., and Rehm, FI. J. (eds.), 1986, Biotechnology,Vol. 4: Microbial Products 1I,VCH Verlag, Weinheim.Google Scholar
  7. Vandamme, E. J. (ed.), 1984 Biotechnology of Industrial AntibioticsDekker, New York. Vining, L. C. (ed.), 1983 Biochemistry and Genetic Regulation of Commercially Important AntibioticsAddison–Wesley, Reading, Mass. Google Scholar
  8. Aharonowitz, Y., Cohen, G., and Martin, J. F., 1992, Penicillin and cephalosporin biosynthetic genes: Structure, organization, regulation, and evolution, Annu. Rev. Microbiol. 46: 461.PubMedGoogle Scholar
  9. Donadio, S., Stayer, M. J., McAlpine, J. B., Swanson, S. J., and Katz, L., 1991, Modular organization of genes required for complex polyketide biosynthesis, Science 252: 675.PubMedGoogle Scholar
  10. Doull, J., Ahmed, Z., Stuttard, C., and Vining, L. C., 1985, Isolation and characterization of Streptomyces venezuelae mutants blocked in chloramphenicol biosynthesis, J. Gen. Microbiol. 131: 97.PubMedGoogle Scholar
  11. Ebersole, R. C., Godfredsen, W. O., Vangedal, S., and Caspi, E., 1973, Mechanism of oxidative cyclization of squalene. Evidence for cyclization of squalene from either end of squalene molecule in the in vivo biosynthesis of fusidic acid by Fusidium coccineum, J. Am. Chem. Soc. 95: 8133.PubMedGoogle Scholar
  12. Elson, S. W., Baggaley, K. H., Davison, M., Fulstone, M., Nicholson, N. H., Risbridger, G. D., and Tyler, J. W., 1993, The identification of three new biosynthetic intermediates and one further biosynthetic enzyme in the clavulanic acid pathway, J. Chem, Soc., Client. Commun. 1993: 1212.Google Scholar
  13. Harris, C. M., Roberson, J. S., and Harris, T. M., 1976, Biosynthesis of griseofulvin J. Am. Chem. Soc. 98:5380. Google Scholar
  14. Isono, K., 1988, Nucleoside antibiotics: Structure, antibiotic activity and biosynthesis J. Antibiot. 41:1711. Google Scholar
  15. Jung, G., 1991, Lantibiotics—Ribosomally synthesized biologically active polypeptides containing sulfide bridges and u-13-didehydroamino acids, Angeza. Chem. Int. Ed. Engl. 30: 1051.Google Scholar
  16. Kakinuma, K., Ogawa, Y., Sakasi, T., Seto, H., and Otake, N., 1989, Mechanism and stereochemistry of the biosynthesis of 2-deoxystreptamine and neosamine C, J. Antibiot. 42: 926.PubMedGoogle Scholar
  17. Katz, L., and Donadio, S., 1993, Polyketide synthesis: Prospects for hybrid antibiotics Annu. Rev. Microbiol. 47:875. Google Scholar
  18. Kleinkauf, H., and von Döhren, H., 1987, Biosynthesis of peptide antibiotics Annu. Rev. Microbiol. 41:259. Google Scholar
  19. Kuo, M. S., Yurek, D. A., Coats, J. H., Chung, S. T., and Li, G. P., 1992, Isolation and identification of 3-propylidene-A-pyrroline-5-carboxylic acid, a biosynthetic precursor of lincomycin, J. Antibiot. 45: 1773.PubMedGoogle Scholar
  20. Lacalle, R. A., Tercero, J. A., and Jiménez, A., 1992, Cloning of the complete biosynthetic gene cluster for an aminonucleoside antibiotic, puromycin, and its regulated expression in heterologous hosts, EMBO J. 11: 785.Google Scholar
  21. Lancini, G. C., 1986, Ansamycins, in Biotechnology, Vol. 4: Microbial Products II ( H. Pape and H.-J. Rehm, eds.), pp. 431–463, VCH Verlag, Weinheim.Google Scholar
  22. Lancini, G. C., 1989, Fermentation and biosynthesis of glycopeptide antibiotics, Prog. Ind. Microbiol. 27: 283.Google Scholar
  23. Martin, J. F., 1984, Biosynthesis, regulation and genetics of polyene macrolide antibiotics, in Macrolide Antibiotics ( S. Omura, ed.), pp. 405–424, Academic Press, New York.Google Scholar
  24. Okuda, T., and Ito, Y., 1982, Biosynthesis and mutasynthesis of aminoglycoside antibiotics, in Aminoglycoside Antibiotics ( H. Umezawa and I. R. Hooper, eds.), pp. 111–203, Springer-Verlag, Berlin.Google Scholar
  25. Omura, S., and Tanaka, Y., 1984, Biochemistry, regulation and genetics of macrolide production, in Macrolide Antibiotics ( S. Omura, ed.), pp. 199–259, Academic Press, New York.Google Scholar
  26. Perlman, D., Otani, S., Perlman, K. L., and Walker, J. E., 1973, 3-Hydroxy-4-methylkynurenine as an intermediate in actinomycin biosynthesis, J. Antibiot. 26: 289.Google Scholar
  27. Vater, J., 1990, Gramicidin S synthetase, in Biochemistry of Peptide Antibiotics (H. Kleinkauf and H. von Döhren, eds.), pp. 33–55, de Gruyter, Berlin.Google Scholar
  28. Walker, J. B., 1975, Pathways of biosynthesis of guanetidated inositol moieties of streptomycin and bluensomycin, Methods Enzymol. 43: 429.PubMedGoogle Scholar

Chapter 7. The Search for and Development of New Antibiotics

  1. Bu’Lock, J. D., Nisbett, L. J., and Wisteinley, D. J. (eds.), 1982, Bioactive Microbial Products: Source and Discovery, Academic Press, New York.Google Scholar
  2. Cross, T., 1982, Actinomycetes: A continuing source of new metabolites, Dev. Ind. Microbiol. 23: 1.Google Scholar
  3. Iwai, Y., and Omura, S., 1982, Culture conditions for screening of new antibiotics, J. Antibiot., 35: 123.PubMedGoogle Scholar
  4. Lancini, G. C., and Lorenzetti, R., 1993, Biotechnology of Antibiotics and Other Bioactive Microbial Metabolites, pp. 73–93, Plenum Press, New York.Google Scholar
  5. Lee, G. P., 1989, Isolation of actinomycetes for antibiotic screening, Chin. J. Antibiot., 14: 452.Google Scholar
  6. Sutcliffe, J. A., and Georgopapadakou, N. H. (eds.), 1992, Emerging Targets in Antibacterial and Antifungal Chemotherapy, Chapman and Hall, London.Google Scholar
  7. Cleeland, R., and Grunberg, E., 1986, Laboratory evaluation of new antibiotics in vitro and in experimental animal infections, in Antibiotics in Laboratory Medicine, 2nd ed. ( V. Lorian, ed.), pp. 825–876, Williams and Wilkins, Baltimore.Google Scholar
  8. Gootz, T. D., 1990, Discovery and development of new antimicrobial agents, Clin. Microh. Rev. 1990: 13.Google Scholar
  9. Zak, O., and O’Reilly, T., 1991, Animal models in evaluation of antimicrobial agents, Antimicrob. Agents Cheorother. 35: 1527.Google Scholar
  10. Bader, F. G., 1986, Physiology and fermentation development, in The Bacteria, Vol. IX: Antibiotic Producing Streptomyces ( S. W. Queener and L. E. Day, eds.), pp. 281–321, Academic Press, New York.Google Scholar
  11. Chater, K. F., 1990, The improving prospect for yield increase by genetic engineering in antibiotic producing streptomyces, Biotechnology 8: 115.PubMedGoogle Scholar
  12. Lancini, G. C., and Lorenzetti, R., 1993, Biotechnology of Antibiotics and Other Bioactive Microbial Metabolites, pp. 175–190, Plenum Press, New York.Google Scholar
  13. Nisbett, L. J., and Winstanley, D. J. (eds.), 1983, Bioactive Microbial Products 2: Development and Production, Academic Press, New York.Google Scholar
  14. Normansell, I. D., 1986, Isolation of streptomyces mutants improved for antibiotic production, in The Bacteria, Vol. IX: Antibiotic Producing Streptomyces ( S. W. Queener and L. E. Day, eds.), pp. 95–118, Academic Press, New York.Google Scholar

Chapter 8. The Use of Antibiotics

  1. Greenwood, D. (ed.), 1989, Antimicrobial Chemotherapy, 2nd ed., Oxford University Press, London.Google Scholar
  2. Kucers, A., McBennet, N., and Kemp, R. J., 1987, The Use of Antibiotics, 4th ed., Heinemann, London.Google Scholar
  3. Kuemmerle, H. P. (ed.), 1983, Clinical Chemotherapy, Vols. 1–3, Thieme-Stratton, New York.Google Scholar
  4. Pratt, W. B., and Fekety, R., 1986, The Antimicrobial Drugs, Oxford University Press, London.Google Scholar
  5. Berdy, J., 1986, Further antibiotics with practical application, in Biotechnology, Vol. 4 ( H. Pape and H. J. Rehm, eds.), pp. 487–505, VCH Verlag, Weinheim.Google Scholar
  6. Braude, R., 1981, Antibiotics as feed additives for livestock, in The Future of Antibiotherapy and Antibiotic Research ( L. Ninet, P. E. Bost, D. H. Bounchaud, and J. Florent, eds.), pp. 169–182, Academic Press, New York.Google Scholar
  7. Misato, T., Ko, K., and Yamaguchi, I., 1988, Use of antibiotics in agriculture, Adv. Appl. Microbiol. 21: 53.Google Scholar
  8. Ruckebusch, R., 1981, Antimicrobial drugs in veterinary medicine, in The Future of Antibiotherapy and Antibiotic Research ( L. Ninet, P. E. Bost, D. H. Bounchaud, and J. Florent, eds.), pp. 141–167, Academic Press, New York.Google Scholar
  9. Vandamme, E. J. (ed.), 1984, Biotechnology of Industrial Antibiotics, Dekker, New York.Google Scholar
  10. Bennet, J., and Bentley, R., 1989, What is a name? Microbial secondary metabolism, Adv. Appl. Microbiol. 34: 1.Google Scholar

Chapter 9. Antibiotics and Producer Organisms

  1. Cundliffe, E., 1989How antibiotic-producing organisms avoid suicide Annu. Rev. Microbiol. 43:207. Google Scholar
  2. Davies, J., 1990What are antibiotics? Archaic functions for modern activities Mol. Microbiol.4:1227. Google Scholar
  3. Demain, A. L., 1989, Functions of secondary metabolites, in Genetics and Molecular Biology of Industrial Microorganisms ( C. L. Herschberger, S. W. Queener, and G. Hegeman, eds.), pp. 1–11, American Society for Microbiology, Washington, D.C.Google Scholar
  4. Laskin, A. I., and Lechevalier, H. A. (eds.), 1988, Handbook of Microbiology, 2nd ed., Vol. 9, Part A, CRC Press, Boca Raton, Fla.Google Scholar
  5. Martin, J. F., and Liras, P., 1989, Organization and expression of genes involved in the biosynthesis of antibiotics and other secondary metabolites, Anna. Rev. Microbiol. 43: 173.Google Scholar
  6. Stone, M. J., and Williams, D. H., 1992, On the evolution of functional secondary metabolites, Mol. Microbiol., 6: 29.PubMedGoogle Scholar
  7. Vining, L. C., 1990, Functions of secondary metabolites, Anna. Rev. Microbiol. 44: 395.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Giancarlo Lancini
    • 1
  • Francesco Parenti
    • 2
  • Gian Gualberto Gallo
    • 1
  1. 1.Lepetit Research CenterMarion Merrell Dow Research Institute (MMDRI)GerenzanoItaly
  2. 2.Marion Merrell Dow Europe AGHorgenSwitzerland

Personalised recommendations