Angiogenesis Models Identify Factors Which Regulate Endothelial Cell Differentiation

  • D. S. Grant
  • D. Morales
  • M. C. Cid
  • H. K. Kleinman
Part of the NATO ASI Series book series (NSSA, volume 263)


During development, blood vessels are rapidly formed from angioblasts in the mesoderm. This is followed by extensive branching of the vessels to supply the needs of the growing tissue. In the adult, however, vessels form a complex and stable network providing a transit-way for blood cells, oxygen, growth factors, hormones, etc., to all tissues. Usually changes in the vasculature occur only in response to injury stimulation, or cyclic changes in the female reproductive system. When induced to become angiogenic, the endothelial and smooth muscle cells enter a migratory and proliferative phase resulting in a reorganization of the vessel wall and the formation of new blood vessels. This involves a cascade of sequential events leading to endothelial cell invasion into the underlying stroma, and the formation of new blood vessels leading away from the parent vessel towards the stimulus 1,2 .


Hepatocyte Growth Factor Tube Formation Vascular Endothelial Cell Growth Factor Basement Membrane Component Matrigel Plug 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Form, D.M., B.M. Pratt, and J.A. Madri, Endothelial cell proliferation during angiogenesis. In vitro modulation by basement membrane components. Lab Invest, 55: 521–30 (1986).Google Scholar
  2. 2.
    Folkman, J., The role of angiogenesis in tumor growth. Semin Cancer Biol, 3: 65–71 (1992).PubMedGoogle Scholar
  3. 3.
    Folkman, J. and Y. Shing, Control of angiogenesis by heparin and other sulfated polysaccharides. Adv Exp Med Biol, 313: 355–64 (1992).PubMedGoogle Scholar
  4. 4.
    Sato, N., H. Nariuchi, N. Tsuruoka, T. Nishihara, J.G. Beitz, P. Calabresi, and A.J. Frackelton, Actions of TNF and IFN-gamma on angiogenesis in vitro. J Invest Dermatol, (1990).Google Scholar
  5. 5.
    Pepper, M.S., D. Belin, R. Montesano, L. Orci, and J.D. Vassalli, Transforming growth factor-beta 1 modulates basic fibroblast growth factor-induced proteolytic and angiogenic properties of endothelial cells in vitro. J Cell Biol, 111: 743–55 (1990).PubMedCrossRefGoogle Scholar
  6. 6.
    Heldin, C.H., K. Usuki, and K. Miyazono, Platelet-derived endothelial cell growth factor. J Cell Biochem, 47: 208–10 (1991).PubMedCrossRefGoogle Scholar
  7. 7.
    Kim, K.J., B. Li, K. Houck, J. Winer, and N. Ferrara, The vascular endothelial growth factor proteins: identification of biologically relevant regions by neutralizing monoclonal antibodies. Growth Factors, 7: 53–64 (1992).PubMedCrossRefGoogle Scholar
  8. 8.
    Grant, D.S., H.K. Kleinman, I.D. Goldberg, M.M. Bhargava, B.J. Nickoloff, J.L. Kinsella, P. Polverini, and E.M. Rosen, Scatter factor induces blood vessel formation in vivo. Proc Natl Acad Sci U S A, 90: 1937–41 (1993).PubMedCrossRefGoogle Scholar
  9. 9.
    Bussolino, F., R.M. Di, M. Ziche, E. Bocchietto, M. Olivero, L. Naldini, G. Gaudino, L. Tamagnone, A. Coffer, and P M. Comoglio, Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J Cell Biol, 119: 629–41 (1992).PubMedCrossRefGoogle Scholar
  10. 10.
    Wright, P.S., D.D. Cross, J.A. Miller, W.D. Jones, and A.J. Bitonti, Inhibition of angiogenesis in vitro and in ovo with an inhibitor of cellular protein kinases, MDL 27032. J Cell Physiol, 152: 448–57 (1992).PubMedCrossRefGoogle Scholar
  11. 11.
    Wilting, J. and B. Christ, A morphological study of the rabbit corneal assay. Anat Anz, 174: 549–56 (1992).CrossRefGoogle Scholar
  12. 12.
    Passaniti, A., R.M. Taylor, R. Pili, Y. Guo, P.V. Long, J.A. Haney, R.R. Pauly, D.S. Grant, and G.R. Martin, A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab Invest, 67: 519–28 (1992).PubMedGoogle Scholar
  13. 13.
    Nicosia, R.F., P. Belser, E. Bonanno, and J. Diven, Regulation of angiogenesis in vitro by collagen metabolism. In Vitro Cell Dev Biol, (1991).Google Scholar
  14. 14.
    Montesano, R., M.S. Pepper, J.D. Vassalli, and L. Orci, Modulation of angiogenesis in vitro. Exs, 61: 129–36 (1992).PubMedGoogle Scholar
  15. 15.
    Lawley, T.J. and Y. Kubota, Induction of morphologic differentiation of endothelial cells in culture. J Invest Dermatol, 93S: 59S - 61S (1989).PubMedCrossRefGoogle Scholar
  16. 16.
    Knighton, D.R., V.D. Fiegel, and G.D. Phillips, The assay of angiogenesis. Prog Clin Biol Res, 365: 291–9 (1991).PubMedGoogle Scholar
  17. 17.
    Auerbach, R., W. Auerbach, and I. Polakowski, Assays for angiogenesis: a review. Pharmacol Ther, 51: 1–11 (1991).PubMedCrossRefGoogle Scholar
  18. 18.
    Takigawa, M., Y. Nishida, F. Suzuki, J. Kishi, K. Yamashita, and T. Hayakawa, Induction of angiogenesis in chick yolk-sac membrane by polyamines and its inhibition by tissue inhibitors of metalloproteinases (TIMP and TIMP-2). Biochem Biophys Res Commun, 171: 126471 (1990).Google Scholar
  19. 19.
    Wilting, J., B. Christ, and H.A. Weich, The effects of growth factors on the day 13 chorioallantoic membrane (CAM): a study of VEGF165 and PDGF-BB. Anat Embryol (Berl), 186: 251–7 (1992).CrossRefGoogle Scholar
  20. 20.
    Grant, D.S., J.L. Kinsella, R. Fridman, R. Auerbach, B.A. Piasecki, Y. Yamada, M. Zain, and H.K. Kleinman, Interaction of endothelial cells with a laminin A chain peptide (SIKVAV) in vitro and induction of angiogenic behavior in vivo. J Cell Physiol, 153: 614–25 (1992).PubMedCrossRefGoogle Scholar
  21. 21.
    Jaffe, E.A., R.L. Nachman, C.G. Becker, and C.R. Minick, Culture of human endothelial cells derived from umbilical veins-identification by morphological and immunological criteria. J. Clin. Invest., 52: 2745–2756 (1973).PubMedCrossRefGoogle Scholar
  22. 22.
    Madri, J.A., L. Bell, M. Marx, J.R. Merwin, C. Basson, and C. Prinz, Effects of soluble factors and extracellular matrix components on vascular cell behavior in vitro and in vivo: models of de-endothelialization and repair. J Cell Biochem, 45: 123–30 (1991).PubMedCrossRefGoogle Scholar
  23. 23.
    Liu, H.M., D.L. Wang, and C.Y. Liu, Interactions between fibrin, collagen and endothelial cells in angiogenesis. Adv Exp Med Biol, 281: 319–31 1990 ).PubMedCrossRefGoogle Scholar
  24. 24.
    Ingber, D., Extracellular matrix and cell shape: potential control points for inhibition of angiogenesis. J Cell Biochem, 47: 236–41 (1991).PubMedCrossRefGoogle Scholar
  25. 25.
    Kinsella, J.L., D.S. Grant, B.S. Weeks, and H.K. Kleinman, Protein kinase C regulates endothelial cell tube formation on basement membrane matrix, Matrigel. Exp Cell Res, 199: 56–62 (1992).PubMedCrossRefGoogle Scholar
  26. 26.
    Madri, J.A. and S.K. Williams, Capillary Endothelial Cell Cultures: Phenotypic Modulation by Matrix Components. J. Cell Biol., 97: 153–165 (1983).PubMedCrossRefGoogle Scholar
  27. 27.
    Grant, D.S., H.K. Kleinman, and G.R. Martin, The role of basement membranes in vascular development. Ann N Y Acad Sci, 588: 61–72 (1990).PubMedCrossRefGoogle Scholar
  28. 28.
    Vukicevic, S., H. Kleinman, F.P. Luyten, A.B. Roberts, N.S. Roche, and A.H. Reddi, Identification of multiple active growth factors in basement membrane Matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Exp. Cell Res., 202: 1–8 (1992).PubMedCrossRefGoogle Scholar
  29. 29.
    Kleinman, H.K., J. Graf, Y. Iwamoto, G.T. Kitten, R.C. Ogle, M. Sasaki, Y. Yamada, G.R. Martin, and L. Luckenbill-Edds, Role of basement membranes in cell differentiation. Ann. N. Y. Acad. of Sci., 513: 134–145 (1987).CrossRefGoogle Scholar
  30. 30.
    Grant, D.S., K.-I. Tashiro, B. Segui-Real, Y. Yamada, G.R. Martin, and H.K. Kleinman, Two different laminin domains mediate the differentiation of human endothelial cells into capillary-like structures in vitro. Cell, 58: 933–943 (1989).PubMedCrossRefGoogle Scholar
  31. 31.
    Kibbey, M.C., D.S. Grant, and H.K. Kleinman, Role of the SIKVAV site of laminin in promotion of angiogenesis and tumor growth: an in vivo Matrigel model. J Natl Cancer Inst, 84: 1633–8 (1992).PubMedCrossRefGoogle Scholar
  32. 32.
    Shelhamer, J.H., D.J. Volkman, J.E. Parillo, T.J. Lawley, M.R. Johnston, and A.S. Fauci, Takayasu s arteritis and its therapy. Ann. Intern. Med., 103: 121–126 (1985).PubMedCrossRefGoogle Scholar
  33. 33.
    Ahmed, S.A., W.J. Penhale, and N. Talal, Sex hormones, immune responses, and autoimmune diseases. Mechanisms of sex hormones action. Am. J. Pathol., 121: 531–551 (1985).Google Scholar
  34. 34.
    Torry, R.J. and B.J. Rongish, Angiogenesis in the uterus: potential regulation and relation to tumor angiogenesis. Am J Reprod Immunol, 27: 171–9 (1992).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • D. S. Grant
    • 1
  • D. Morales
    • 1
  • M. C. Cid
    • 1
  • H. K. Kleinman
    • 1
  1. 1.Laboratory. of Developmental BiologyNational Institute of Dental Research, NIHBethesdaUSA

Personalised recommendations