Human Basic Fibroblast Growth Factor: Structure-Function Relationship of an Angiogenic Molecule

  • Marco Presta
  • Marco Rusnati
  • Anna Gualandris
  • Patrizia Dell’Era
  • Chiara Urbinati
  • Daniela Coltrini
  • Elena Tanghetti
  • Mirella Belleri
Part of the NATO ASI Series book series (NSSA, volume 263)


Basic fibroblast growth factor (bFGF) belongs to the family of the heparin-binding growth factors which includes also acidic FGF and five other gene products (Basilico and Moscatelli, 1992). bFGF exerts various biological activities in vitro and in vivo on different cell types. In particular, bFGF is an angiogenic molecule that induces a set of complex, coordinated responses in cultured endothelial cells, including cell proliferation, chemotaxis, and protease production (Presta et al., 1986). The identification of the functional domains of bFGF appears to be of pivotal importance for the development of drugs aimed to stimulate or to inhibit angiogenesis in various pathological conditions. In the present paper we will summarize findings from different laboratories on the structure-function relationship of this angiogenic growth factor.


Basic Fibroblast Growth Factor Mitogenic Activity Bovine Aortic Endothelial Cell Cell BioI Human Basic Fibroblast Growth Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akiyama, S.K., and Yamada, K.M., 1985, Synthetic peptides competitively inhibit both direct binding to fibroblasts and functional biological assays for the purified cell-binding domain of fibronectin, J. Biol. Chem., 260: 10402.PubMedGoogle Scholar
  2. Baird, A., Schubert, D., Ling, N., and Guillemin, R, 1988, Receptor-and heparin-binding domains of basic fibroblast growth factor, Proc. Natl. Acad. Sci. U.S.A. 85: 23–24.CrossRefGoogle Scholar
  3. Baldin, V., Roman, A.M., Bosc-Bieme, I., Amalric, F., and Bouche, G., 1990, Translocation of bFGF to the nucleus is G1 phase cell cycle specific in bovine aortic endothelial cells, EMBO J. 9: 1511.PubMedGoogle Scholar
  4. Basilico, C., and Moscatelli, D., 1992, The FGF family of growth factors and oncogenes, Adv. Cancer Res. 59: 115.PubMedCrossRefGoogle Scholar
  5. Baskin, P., Doctrow, S., Klagsbrun, M., Svahn, C.M., Folkman, J. and Vlodaysky, I., 1989, Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules, Biochemistry 28: 1737.CrossRefGoogle Scholar
  6. Bouche, G., Gas, N., Prats, H., Baldin, V., Tauber, J.P., Teissié, J., and Amalric, F., 1987, Basic fibroblast growth factor enters the nucleolus and stimulates the transcription of ribosomal genes in ABAE cells undergoing Go-G1 transition, Proc. Natl. Acad. Sci. U.S.A. 84: 67–70.CrossRefGoogle Scholar
  7. Breeuwer, M., and Goldfarb, D.S., 1990, Facilitated nuclear transport of histone Hl and other small nucleophilic proteins, Cell 60: 999.PubMedCrossRefGoogle Scholar
  8. Bugler,B., Amalric, F., and Prats, H., 1991, Alternative initiation of translation determines cytoplasmic or nuclear localization of basic fibroblast growth factor, Mol. Cell. Biol. 11: 573.Google Scholar
  9. Burgess, W.H., Bizik, J., Mehlman, T., Quarto, N., and Rifkin, D.B., 1991, Direct evidence for methylation of arginine residues in high molecular weight forms of basic fibroblast growth factor, Cell Regul. 2: 87.PubMedGoogle Scholar
  10. Chelsky, D., Ralph, R, and Jonak, G., 1989, Sequence requirements for synthetic peptide-mediated translocation to the nucleus, Mol. Cell. Biol. 9: 24–87.Google Scholar
  11. Coltrini, D., Rusnati, M., Zoppetti, G., Oreste, P., Iascchi, A., Caccia, P., Bergonzoni, L., and Presta, M., 1993, Biochemical bases of the interaction of human basic fibroblast growth factor with glycosaminoglycans: new insights from trypsin digestion studies, Eur. J. Biochem. in press.Google Scholar
  12. Couderc, B., Prats, H., Bayard, F., and Amalric, F., 1991, Potential oncogenic effects of basic fibroblast growth factor requires cooperation between CUG and AUG-initiated forms, Cell Regul. 2: 709.PubMedGoogle Scholar
  13. Dell’Era, P., Presta, M., and Ragnotti, G., 1991, Nuclear localization of endogenous basic fibroblast growth factor in cultured endothelial cells, Exp. Cell Res. 192: 505.PubMedCrossRefGoogle Scholar
  14. Eppstein, D.A., Marsh, Y.V., Schryver, B.B., and Bertics, P.J., 1989, Inhibition of epidermal growth factor/trasforming growth factor-a stimulated cell growth by a synthetic peptide, J. Cell. Physiol. 141: 420.PubMedCrossRefGoogle Scholar
  15. Eriksson, A.E., Cousens, L.S., Weaver, L.H., Matthews, B.W., 1991, Three-dimensional structure of human basic fibroblast growth factor, Proc. Natl. Acad. Sci. U.S.A. 88: 34–41.CrossRefGoogle Scholar
  16. Feige, J.J., Bradley, J.D., Fryburg, K., Farris, J., Cousens, L.C., Barr, P.J., and Baird, A., 1989, Differential effects of heparin, fibronectin, and laminin on the phosphorylation of basic fibroblast growth factor by protein kinase C and the catalytic subunit of protein kinase A, J. Cell Biol. 109: 3105.PubMedCrossRefGoogle Scholar
  17. Flaumenhaft, R, Moscatelli, D., Salcsela, O., and Rifkin, D.B., 1989, Role of extracellular matrix in the action of basic fibroblast growth factor: matrix as a source of growth factor for long-term stimulation of plasminogen activator production and DNA synthesis, J. Cell. Physiol. 140: 75.PubMedCrossRefGoogle Scholar
  18. Flaumenhaft, R., Moscatelli, D., and Rifkin, D B, 1990, Heparin and heparan sulphate increase the radius of diffusion and action of basic fibroblast growth factor, J. Cell Biol. 111: 1651.PubMedCrossRefGoogle Scholar
  19. Florkiewicz, R.Z., and Sommer, A., 1989, Human basic fibroblast growth factor gene encodes four polypeptides: three initiate translation from non-AUG codons. Proc. Natl. Acad. Sci. U.S.A. 86: 39–78.CrossRefGoogle Scholar
  20. Florkiewicz, R.Z., Baird, A., and Gonzalez, A.M., 1991, Multiple forms of bFGF: differential nuclear and cell surface localization, Growth Factors 4: 265.PubMedCrossRefGoogle Scholar
  21. Gospodarowicz, D., Greenburg, G., and Birdwell, RC., 1978, Determination of cellular shape by the extracellular matrix and its correlation with the control of cellular growth, Cancer Res. 38: 41–55.Google Scholar
  22. Gospodarowicz, D., and Cheng, J., 1986, Heparin protects basic and acidic FGF from inactivation, J. Cell. Physiol. 128: 475.PubMedCrossRefGoogle Scholar
  23. Gualandris, A., Coltrini, D., Bergonzoni, L., Isacchi, A., Tenca, S., Ginelli, B., and Presta, M., 1993, The N-terminal extension of high molecular weight forms of basic fibroblast growth factor (bFGF) is not essential for the binding of bFGF to nuclear chromatin in transfected NIH 3T3 cells, Growth Factors 8: 49.PubMedCrossRefGoogle Scholar
  24. Habazetti, J., Gondol, D., Wiltscheck, R., Otlewsky, J., Schleicher, M. and Holak, T.A., 1992, Structure of hisactophilin is similar to interleukin-1ß and fibroblast growth factor, Nature 359: 855.CrossRefGoogle Scholar
  25. Hageman, G.S., Kirchoff-Rempe, M.A., Lewis, G.P., Fisher, S.K., and Anderson, D.H., 1991, Sequestration of basic fibroblast growth factor in the primate retinal interphotoreceptor matrix, Proc. Natl. Acad. Sci. U.S.A. 88: 6706.PubMedCrossRefGoogle Scholar
  26. Hynes, RO., 1987, Integrins: a family of cell surface receptors, Cell 48: 549.PubMedCrossRefGoogle Scholar
  27. Imamura, T., Englera, K., Zhan, X., Tokita, Y., Forough, R, Roeder, D., Jackson, A., Maier, J.A.M., Hia, T., and Maciag, T., 1990, Science 249: 15–67.CrossRefGoogle Scholar
  28. Imamura, T., Tokita, Y., and Mitsui, Y.,Recovery of mitogenic activity of a growth factor mutant with a nuclear translocation sequence, 1992, Identification of a heparin-binding growth factor-1 nuclear translocation sequence by deletion mutation analysis, J. Biol. Chem. 267: 56–76.Google Scholar
  29. Ingber, D.E., Madri, J.A., and Folkman, J., 1987, Endothelial growth factors and extracellular matrix regulate DNA synthesis through modulation of cell and nuclear expansion, In Vitro Cell. Dev. Biol. 23: 387.PubMedCrossRefGoogle Scholar
  30. Ingber, D.E., and Folkman, J., 1988, Inhibition of angiogenesis through modulation of collagen metabolism, Lab. Invest., 59: 41.Google Scholar
  31. Ingber, D.E., and Folkman. J., 1989, Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix, J. Cell Biol. 109: 317.PubMedCrossRefGoogle Scholar
  32. Ingber, D.E., 1990, Fibronectin controls capillary endothelial cell growth by modulating cell shape, Proc. Natl. Acad. Sci. U.S.A. 87: 35–79.CrossRefGoogle Scholar
  33. Ingber, D.E., Prusty, D., Frangioni, J.V., Cragoe, E.J.Jr., Lechene, C., and Schwartz, M.A., 1990, Control of intracellular pH and growth by fibronectin in capillary endothelial cells, J. Cell Biol. 110: 1803.PubMedCrossRefGoogle Scholar
  34. Isacchi, A., Statuto, M., Chiesa, R, Bergonzoni, L., Rusnati, M., Sarmientos, P., Ragnotti, G., and Presta, M., 1991, A 6-amino acid deletion in basic fibroblast growth factor dissociates its mitogenic activity from its plasminogen activator-inducing capacity, Proc. Natl. Acad. Sci. U.S.A. 88: 26–28.CrossRefGoogle Scholar
  35. Johnson, D.E., and Williams, L.T., 1993, Structural and functional diversity in the FGF receptor multigene family, Adv. Cancer Res. 60: 1.PubMedCrossRefGoogle Scholar
  36. Katsuura, M., and Tanaka, S., 1989, Topographic analysis of human epidermal growth factor by monospecific antibodies and synthetic peptides, J. Biochem. 106: 87.PubMedGoogle Scholar
  37. Klagsbrun, M., and Baird, A., 1991, A dual receptor system is required for basic fibroblast growth factor activity, Cell 67: 229.PubMedCrossRefGoogle Scholar
  38. Krstenansky, J., Trivedi, D., and Hruby, V.J., 1986, Importance of the 10–13 region of glucagon for its receptor interactions and activation of adenylate cyclase, Biochemistry 25: 3833.PubMedCrossRefGoogle Scholar
  39. Kurokawa, M., Doctrow, S.R., and Klagsbrun, M., 1989, Neutralizing antibodies inhibit the binding of fibroblast growth factor to its receptor but not to heparin, J. Biol. Chem., 264: 76–86.Google Scholar
  40. Moscatelli, D., Joseph-Silverstein, J., Presta. M., and Rifkin, D.B., 1988, Multiple forms of an angiogenesis factor: basic fibroblast growth factor, Biochimie 70: 83.Google Scholar
  41. Nestor, J.J., Newman, S R, DeLustro, B., Todaro, G.J., and Schreiber, A.B., 1985, A synthetic fragment of rat transforming growth factor-cc with receptor binding and antigenic properties, Biochem. Biophys. Res. Commun. 129: 226PubMedCrossRefGoogle Scholar
  42. Ornitz, D.M., Yayon, A., Flanagan, J.G., Svahn, C.M., Levi, E., and Leder, P, 1992, Heparin is required for cell-free binding of fibroblast growth factor to a soluble receptor and for mitogenesis in whole cells, Mol. Cell. Biol. 12: 240.PubMedGoogle Scholar
  43. Presta, M., Moscatelli, D., Joseph-Silverstein, J., and Rifkin, D.B., 1986, Purification from a human hepatoma cell line of a basic fibroblast growth factor-like molecule that stimulates capillary endothelial cell plasminogen activator production, DNA synthesis, and migration, Mol. Cell. Biol. 6: 40–60.Google Scholar
  44. Presta, M., Maier, J.A.M., Rusnati, M., and Ragnotti, G., 1989, Basic fibroblast growth factor is released from endothelial extracellular matrix in a biologically active form, J. Cell. Physiol. 140: 68.PubMedCrossRefGoogle Scholar
  45. Presta, M., Rusnati, M., Urbinati, C., Sommer, A., and Ragnotti, G., 1991, Biologically active synthetic fragments of human basic fibroblast growth factor (bFGF): identification of two asp-gly-argcontaining domains involved in the mitogenic activity of bFGF in endothelial cells, J. Cell. Physiol. 149: 524.CrossRefGoogle Scholar
  46. Presta, M., Statuto, M., Isacchi, A., Caccia, P., Pozzi, A., Gualandris, A., Rusnati, M., Bergonzoni, L., and Sarmientos, P., 1992, Structure-function relationship of basic fibroblast growth factor: site-directed mutagenesis of a putative heparin-binding and receptor-binding region, Biochem. Biophys. Res. Commun. 185: 1098.PubMedCrossRefGoogle Scholar
  47. Quarto, N., Talarico, D., Florkiewicz, R, and Rifkin, D B, 1991a, Selective expression of high molecular weight basic fibroblast growth factor confers a unique phenotype to NIH 3T3 cells, Cell Regul. 2: 699.PubMedGoogle Scholar
  48. Quarto, N., Finger, F.P., and Rifkin, D.B., 1991b, The NH2- terminal extension of high molecular weight bFGF is a nuclear targeting signal, J. Cell. Physiol. 147: 311.PubMedCrossRefGoogle Scholar
  49. Renko, M., Quarto, N., Morimoto, T., and Rifkin, D.B., 1990, Nuclear and cytoplasmic localization of different basic fibroblast growth factor species, J. Cell. Physiol. 144: 108.PubMedCrossRefGoogle Scholar
  50. Ruoslathi, E., and Piershbacher, M.D., 1986, Arg-Gly-Asp: a versatile cell recognition signal, Cell 44: 517.CrossRefGoogle Scholar
  51. Ruoslathi, E., and Piershbacher, M.D., 1987, New perspectives in cell adhesion: RGD and integrins, Science 238: 493.Google Scholar
  52. Schubert, D., Ling, N., and Baird, A., 1987, Multiple influences of a heparin-binding growth factor on neuronal development, J. Cell Biol. 104: 635.PubMedCrossRefGoogle Scholar
  53. Seno, M., Saaada, R, Kurokawa, T., and Igarashi, K., 1990, Carboxyl-terminal structure of basic fibroblast growth factor significantly contributes to its affinity for heparin, Eur. J. Biochem. 188: 239.PubMedCrossRefGoogle Scholar
  54. Silver, P.A., 1991, How proteins enter the nucleus, Cell 64: 489.PubMedCrossRefGoogle Scholar
  55. Sommer, A., and Rifkin, D B, 1989, Interaction of heparin with human basic fibroblast growth factor: protection of the angiogenic protein from proteolytic degradation by a glycosaminoglycan, J. Cell. Physiol. 138: 215.PubMedCrossRefGoogle Scholar
  56. Tessler, S., and Neufeld, G., 1990, Basic fibroblast growth factor accumulates in the nuclei of various bFGF-producing cell types, J. Cell. Physiol. 145: 310.PubMedCrossRefGoogle Scholar
  57. Vlodaysky, J., Folkman J., Sullivan, R, Fridman, R, IshaiMichaeli, R, Sasse, J., and Klagsbrun, M., 1987, Endothelial cell-derived basic fibroblast growth factor: synthesis and deposition into subendothelial extracellular matrix, Proc. Acad Sci. U.S.A. 84: 22–92.Google Scholar
  58. Vlodaysky, I., Bar-Shavit, R, Ishai-Michaeli, R, Bashkin, P., and Fuks, Z., 1991, Extracellular sequestration and release of fibroblast growth factor: a regulatory mechanism? Trends Biochem. Sci. 16: 268.CrossRefGoogle Scholar
  59. Walicke, P.A., Feige J. J., and Baird, A., 1989, Characterization of the neuronal receptor for basic fibroblast growth factor and comparison to receptors on mesenchymal cells, J. Biol. Chem. 264: 4120.PubMedGoogle Scholar
  60. Walicke, P.A., and Baird, A., 1991, Internalization and processing of basic fibroblast growth factor by neurons and astrocytes, J. Neurosci. 11: 22–49.Google Scholar
  61. Yayon, A., Klagsbrun, M., Esko, J.D., Leder, P., and Ornitz, D.M., 1991, Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor, Cell 64: 841.PubMedCrossRefGoogle Scholar
  62. Zhang, J., Cousens, L.S., Barr, P.J., and Sprang, S.R, 1991, Three-dimensional structure of human basic fibroblast growth factor, a structural homolog to interleukin-113, Proc. Natl. Acad. Sci. U.S.A. 88: 34–46.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Marco Presta
    • 1
  • Marco Rusnati
    • 1
  • Anna Gualandris
    • 1
  • Patrizia Dell’Era
    • 1
  • Chiara Urbinati
    • 1
  • Daniela Coltrini
    • 1
  • Elena Tanghetti
    • 1
  • Mirella Belleri
    • 1
  1. 1.Unit of General Pathology and Immunology Department of Biomedical Sciences and Biotechnology School of MedicineUniversity of BresciaBresciaItaly

Personalised recommendations