Advertisement

Inhibitors of Neovascularization: Critical Mediators in the Coordinate Regulation of Angiogenesis

  • Peter J. Polverini
Chapter
Part of the NATO ASI Series book series (NSSA, volume 263)

Abstract

The processes of tissue regeneration and repair, the cyclical proliferation of the nutrient-rich endometrial lining in preparation for implantation of the fertilized egg; and the complex developmental program that characterizes embryogenesis are biological processes that are strictly dependent on the rapid yet temporary ingrowth of new capillary blood vessels. In contrast, disorders such as neoplasia, proliferative vascular lesions, rheumatoid arthritis and psoriasis, and glaucoma are all characterized by disregulated angiogenesis. The mechanisms underling inappropriate neovascularization have been the subject of considerable investigation. Although there is ample evidence implicating the “overproduction” of normal and/or aberrant forms of angiogenic mediators in the pathogenesis of several well characterized disorders, only recently has attention been given to the role of naturally occurring inhibitors of angiogenesis and the consequences that result from a deficiency in the production of one or more of these “angiostatic” mediators (Moses and Langer, 1991a; Bouck, 1990 and 1993; DiPietro and Polverini, 1993, in press). This report will describe recent studies that support the assertion that angiogenesis is a process that is dependent upon the coordinate production of growth stimulatory and inhibitory molecules and that any disruption in this finely tuned regulatory circuit can result in the development of a number of diseases now classified as “angiogenesisdependent”.

Keywords

Tumor Suppressor Gene Corneal Neovascularization Cortisone Acetate Chick Chorioallantoic Membrane Capillary Blood Vessel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bader, S.A., Fasching, C., Brodeur, G.M., and Stanbridge, E.J., Dissocoation of suppression of tumorigenicity and differentiation in vitro effected by transfer of a single human chromosome into neuroblastoma cells. Cell Growth Differ. 2: 245.Google Scholar
  2. Blood, C.H., and Zetter, B.R., 1990, Tumor interactions with the vasculature: Angiogenesis and tumor metastasis. Biochim. Biophys. Acta 1032: 89Google Scholar
  3. Bornstein, P., 1992, Thrombospondins: structure and regulation of expression. FASEB Jr. 6: 3290.Google Scholar
  4. Bouck, N., 1990, Tumor angiogenesis: the role of oncogenes and tumor suppressor genes. Cancer Cells 2, 179.PubMedGoogle Scholar
  5. Bouck, N., Angiogenesis: a mechanism by which oncogenes and tumor suppressor genes regulate tumorigenesis, in “ Oncogenes and Tumor Suppressor Genes” C.C. Benz and E.T. Liu, eds, Kluwer Academic Publishers, BostonGoogle Scholar
  6. Bouck, N. P., Stoler, A. and Polverini, P. J., 1986, Coordinate control of anchorage independence, actin cytoskeleton and angiogenesis by human chromosome 1 in hamster-human hybrids. Cancer Res. 46: 5101.PubMedGoogle Scholar
  7. Brem, H., and Folkman, J., 1975, Inhibition of tumor angiogenesis mediated by cartilage. J. Exp. Med. 141: 427.PubMedCrossRefGoogle Scholar
  8. Brem, S., Preis, I., Langer, R., Folkman, J., and Patz, A., 1977, Inhibition of neovascularization by an extract derived from vitreous. Am. J. Ophthalmol. 84: 323.PubMedGoogle Scholar
  9. Cozzolino, F., Torcia, M., Aldinucci, D., Ziche, M., Almerigogna, F., Bani, D., and Stern, D.M., 1990, Interleukin 1 is an autocrine regulator of human endothelial cell growth. Proc. Natl. Acad. Sci. USA., 87: 6487.PubMedCrossRefGoogle Scholar
  10. Crum, R., Sazbo, S., and Folkman, J., 1985, A new class of steroids inhibits angiogenesis in the presence of heparin or a heparin fragment. Science 230: 1375.PubMedCrossRefGoogle Scholar
  11. DiPietro, L. A., and Polverini, P.J., 1993, Role of the macrophage in the positive and negative regulation of wound neovascularization, Behring Inst. Mitt., (in press)Google Scholar
  12. DiPietro, L. A., Nebgen, D. R., and Polverini, P.J., [submitted for publication (a)]. Down-regulation of endothelial cell thrombospondin 1 enhances in vitro angiogenesisGoogle Scholar
  13. DiPietro, L. A., and Polverini, P. J., 1993, Angiogenic macrophages produce the angiogenic modulator thrombospondin 1. Am. J. Pathol. in pressGoogle Scholar
  14. Eisenstein, R., Kuettner, K.E., Neopolitan, C., Sobel, L.W., and Sorgente, N., 1975, The resistance of certain tissues to invasion III. Cartilage extracts inhibit the growth of fibroblasts and endothelial cells in culture. Am. J. Pathol. 81: 337.PubMedGoogle Scholar
  15. Engerman R.L., Pfaffenbach, D., and Davis, M.D., 1967, Cell turnover of capillaries. Lab. Invest. 17: 738.PubMedGoogle Scholar
  16. Folkman, J., 1972, Angiogenesis in psoriasis: Therapeutic implications. J. Invest. Dermatol. 59: 40.PubMedCrossRefGoogle Scholar
  17. Folkman, J., and Klagsbrun, M., 1987, Angiogenic factors. Science 235: 442.PubMedCrossRefGoogle Scholar
  18. Folkman, J., Weisz, P. B., Joullie, M. M., Li, W. W., and Ewing, W. R., 1989, Control of angiogenesis wiyh systemic heparin substitutes. Scienec 243: 1490.CrossRefGoogle Scholar
  19. Frazier, W. A., 1987, Thrombospondin: a modular adhesive glycoprotein of platelets and nucleated cells. J. Cell Biol. 105: 625.PubMedCrossRefGoogle Scholar
  20. Frazier, W. A., 1991, Thrombospondin. Curr. Opinions in Cell Biol. 3: 792.Google Scholar
  21. Goldfarb, M., 1990, The fibroblast growth factor family. Cell Growth Differ. 1: 439.PubMedGoogle Scholar
  22. Good, D. J., Polverini, P. J., Rastinejad, F., Le Beau, M. M., Lemons, R. S., Frazier, W. A., and Bouck, N. P., 1990, A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc. Natl. Acad. Sci. USA 87: 6624.Google Scholar
  23. Grant, D. K., Tashiro, K-I., Segui-Real, B., Yamada, Y., Martin, G. R., and Kleinman, H. K., 1989, Two different laminin domains mediate the differentiation of human endothelial cells into capillary-like structures in vitro. Cell 58: 933.PubMedCrossRefGoogle Scholar
  24. Haynes, W. L., Proia, A. D., and Klintworth, G. K., 1989, Effect of inhibitors of arachidonic acid metabolism on corneal neovascularization in the rat. Invest. Ophthalmol Visual Sci. 30: 1588.Google Scholar
  25. Hogg, P.J., Stenflo, J., and Mosher, D. F., 1992, Thrombospondin is a slow tight-binding inhibitor of plasmin. Biochemistry 31: 265.PubMedCrossRefGoogle Scholar
  26. Huang, H-J.S., Yee, J-K., Shew, J-Y., Chen, P-L., Bookstein, R., Friedman, T., Lee, E.YH.P., and Lee, W-H., 1988, Suppression of the neoplastic phenotype by replacement of the RB gene in human cancer cells. Science 242: 1563.PubMedCrossRefGoogle Scholar
  27. Ingber, D., and Folkman, J., 1988, Inhibition of angiogenesis through modulation of collagen metabolism. Lab. Invest. 59: 44.PubMedGoogle Scholar
  28. Inoue, K., Korenaga, H., Tahnaka, N. G., Sakamoto, N., and Shizuo, K., 1988, The sulfated polysaccharide-peptidoglycan complex potently inhibits embryonic angiogenesis and tumor growth in the presence of cortisone acetate. Carbohydr. Res. 181: 135.PubMedCrossRefGoogle Scholar
  29. Iruela-Arispe, M., Bornstein, P., and Sage, H., 1991, Thrombospondin exerts an antiangiogenic effect on cord formation by endothelial cells in vitro. Proc. Natl. Acad. Sci. USA 88: 5026.PubMedCrossRefGoogle Scholar
  30. Jaffe, E. A., Ruggiero, J. T., and Falcone D. J., 1985, Monocytes and macrophages synthesize and secrete thrombospondin. Blood 65: 79.PubMedGoogle Scholar
  31. Klagsbrun, M., and D’Amore P.A., 1991, Regulators of angiogenesis. Annu. Rev. Physiol. 53: 217.PubMedCrossRefGoogle Scholar
  32. Klagsbrun, M., and Folkman, J., 1990, Peptide Growth Factors and Their Receptors II, in: “Angiogenesis. Handbook of Experimental Pharmacology, Vol., 95/II”, p. 549–586. M.B. Sporn and A.B. Roberts, (Eds.) Springer-Verlag, Berlin, Heildelberg, Germany.Google Scholar
  33. Koch, A. E., Polverini, P. J., and Leibovich, S. J., 1986, Stimulation of neovascularization by human rheumatoid synovial tissue macrophages. Arth. Rheum. 29: 471.CrossRefGoogle Scholar
  34. Koch, A. E.,Polverini, P.J., Kunkel, S. L., Harlow, L. A., DiPietro, L. A., Elner, V.M., Elner, S.G., and Strieter, R.M., 1992, Interleukin-8 (IL-8) as a macrophage-derived mediator of angiogenesis. Science 258: 1798.PubMedCrossRefGoogle Scholar
  35. Langer, R., Brem, H., Falterman, K., Klein, M., and Folkman, J., 1976, Isolation of a cartilage factor that inhibits tumor neovascularization Science 193: 70.Google Scholar
  36. Lawler, J., 1986, The structural and functional properties of thrombospondin. Blood 67: 1197.PubMedGoogle Scholar
  37. Lee, A., and Langer, R., 1983, Shark cartilage contains inhibitors of tumor angiogenesis. Science 221: 1185.PubMedCrossRefGoogle Scholar
  38. Lutty, G. A., Thompson, D. C., Gallup, J. Y., Mello, R. J., Patz, A., and Fenselau, A., 1983, Vitreous: an inhibitor of retinal extract-induced neovascularization. Invest. Ophthalmol. Vis. Sci. 24: 52.PubMedGoogle Scholar
  39. Lynch, N. R., Castes, M., Astoin, M., and Salomon, J. C., 1978, Mechanisms of inhibition of tumor growth by asprin and indomethacin. Br. J. Cancer 38: 503.PubMedCrossRefGoogle Scholar
  40. Maione, T. E., Gray, G. S., Petro, J., Hunt, A. J., Donner, A. L., Bauer, S. I., Carson, H. F., and Sharpe, R. J., 1990, Inhibition of angiogenesis by recombinant human platelt factor-4 and related peptides. Science 247: 77.PubMedCrossRefGoogle Scholar
  41. Mansfield, P. J., Boxer, L. A., and Suchard, S. J., 1990, Thrombospondin stimulates motility of human neutrophils. J. Cell Biol. 111: 3077.PubMedCrossRefGoogle Scholar
  42. Moroco, J.R., Solt, D.B., and Polverini, P.J., 1990, Sequential loss of suppressor genes for three specific functions during in vivo carcinogenesis. Lab. Invest. 63: 298.PubMedGoogle Scholar
  43. Moses, M.A., and Langer, R., 1991a, Inhibitors of angiogenesis. Biotechnology 9: 630.PubMedCrossRefGoogle Scholar
  44. Moses, M. A., and Langer, R., 1991b, A metalloproteinase inhibitor as an inhibitor of neovascularization. J. Cell. Biochem. 47: 230.PubMedCrossRefGoogle Scholar
  45. Nathan, C. F. (1987) Secreted products of macrophages. J. Clin. Invest. 79, 319–26.PubMedCrossRefGoogle Scholar
  46. Nickoloff, B. J., Mitra, R. S., Varani, J., Dixit, V. M., and Polverini, P. J. (submitted for publication) Psoriatic keratinocyte induced angiogenesis is inhibited by hrombospondin.Google Scholar
  47. O’Shea, K. S., and Dixit, V. M., 1988, Unique distribution of the extracellular matrix component thrombospondin in the developing mouse embryo. J. Cell Biol. 107: 27–37.Google Scholar
  48. Oikawa, T., Hirotani, K., Nakamura, O., Shudo, K., Hiragun, A., and Iwaguchi, T., 1989, A highly potent antiangiogenic activity of retinoids. Cancer Lett. 48: 157PubMedCrossRefGoogle Scholar
  49. Orchard, P. J., Smith, C. M. II, Woods, W. G., Day, D. L., and Dehner, L. P., 1989, Treatment of hemangioendotheliomas with alpha interferon. The Lancet 2: 565.CrossRefGoogle Scholar
  50. Pauli, B., Memoli, V., and Kuttner, K., 1981, Regulation of tumor invasion by cartilage-derived anti-invasive factor in vitro. J. Natl. Cancer Inst. 67: 65.PubMedGoogle Scholar
  51. Peterson, H-I., 1986, Tumor angiogenesis inhibition by prostaglandin synthetase inhibitors. Anticancer Res. 6: 251.PubMedGoogle Scholar
  52. Polverini, P. J., 1989, Macrophage-induced Angiogenesis: A review; in, “Macrophage- Derived Cell Regulatory Factors”, C. Sorg, ed., S. Karger, Basel, pp. 54Google Scholar
  53. Rastinejad, F., Polverini, P. J. and Bouck N. P., 1989, Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene. Cell 56: 345.PubMedCrossRefGoogle Scholar
  54. Robin, J. B., Regis-Pacheco, L. F., Kash, R. L., and Schanzlin, D. J., 1985, The histopathology of of corneal neovascularization, inhibitor effects. Arch Ophthalmol. 103: 284.PubMedCrossRefGoogle Scholar
  55. Sage, H., and Bornstein, P., 1982, Endothelial cells from umbilical vein and a hemangioendothelioma secrete basement membrane largely to the exclusion of interstitial procollagens. Arteriosclerosis 2: 27.PubMedCrossRefGoogle Scholar
  56. Sage, H., and Bornstein, P., 1991, Extracellular proteins that modulate cell-matrix interactions. J Biol. Chem. 266: 14831.PubMedGoogle Scholar
  57. Savill, J., Hogg, N., and Haslett, C., 1991, Macrophage vitronectin receptor, CD36, and thrombospondin cooperate in recognition of neutrophils undergoing programmed cell death. Chest 99: 65.CrossRefGoogle Scholar
  58. Shapiro, R., and Valee, B. L., 1987, Human placental ribonuclease inhibitor abolishes both angiogenic and ribonucleolytic activities of angiogenin. Proc. Natl. Acad. Sci. 84: 22–38.Google Scholar
  59. Sidky, Y. A., and Borden, E. C., 1987, Inhibition of angiogenesis by interferons: effects on tumor-and lymphocyte-induced vascular responses. Cancer Res. 47: 51–55.Google Scholar
  60. Silverstein, R. L., and Nachman, R. L., 1987, Thrombospondin binds to monocytes and macrophages and mediates platelet-monocyte adhesion. J. Clin. Invest. 79: 867.PubMedCrossRefGoogle Scholar
  61. Strieter, R. M., Kunkel, S. L., Elner, V. M., Martonyi, C. L., Koch, A. E., Polverini, P. J., and Elner, S. G., 1992, Interleukin-8 a corneal factor that induces neovascularization. Am. J. Pathol. 141: 1279.PubMedGoogle Scholar
  62. Tannock, I. F., and Hayashi, S., 1972, The proliferation of capillary endothelial cells. Cancer Res. 32: 77.PubMedGoogle Scholar
  63. Taylor, C. W., and Weiss, J. B., 1985, Partial purification of a 5.7k glycoprotein from bovine vitreous which inhibits both angiogenesis and collagenase activity. Biochem and Biophys. Res. Commun. 133: 911.CrossRefGoogle Scholar
  64. Taylor, S., and Folkman, J., 1982, Protamine is an inhibitor of angiogenesis. Nature 297: 307.PubMedCrossRefGoogle Scholar
  65. Thomas, K.A., 1988, Transforming potential of fibroblast growth factor genes. Trends in Biochem. Sci. 13: 327.CrossRefGoogle Scholar
  66. Tolsma, S.S., Volpert, O.V., Good, D.J., Frazier, W.A., Polverini, P.J., and Bouck, N., 1993, Peptides derived from two separate domains of the matrix protein thrombospondin-1 have anti-angiogenic activity, J. Cell Biol. in press.Google Scholar
  67. West, D. C., and Kumar, S., 1989, Hyaluronan and Angiogenesis, in, The Biology of Hyaluronan ( Ciba Foundation Symp.) Wiley, Chichester, pp 143.Google Scholar
  68. White, C. W., Wolf, S. J., Korones, D. N., Sondheimer, H. M., Tosi, M. F., and Yu, A., 1991, Treatment of childhood angiomatous diseases with recombinant interferon alpha. J. Pediatr. 118: 59.PubMedCrossRefGoogle Scholar
  69. Woltering, E. A., Barrie, R., O’Dorisio, T. M., Arce, D., Ure, T., Cramer, A., Holmes, D., Robertson, J., and Fassler, J., 1991, Somatostatin analogues inhibit angiogenesis in the chick chorioallantoic membrane. J. Surg. Res. 50: 245.PubMedCrossRefGoogle Scholar
  70. Ziche, M., Jones, J., and Gullino, P. M., 1982, Role of prostaglandin El and copper in angiogenesis. J. Natl. Cancer Inst. 69: 475.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Peter J. Polverini
    • 1
  1. 1.Section of Oral Pathology Laboratory of Molecular PathologyUniversity of Michigan School of DentistryAnn ArborUSA

Personalised recommendations