Advertisement

Angiogenesis pp 321-331 | Cite as

Factitious Angiogenesis: Not so Factitious Anymore? The Role of Angiogenic Processes in the Endothelialization of Artificial Cardiovascular Prostheses

  • Peter I. Lelkes
  • Dawn M. Chick
  • Mark M. Samet
  • Viktor Nikolaychik
  • Gregory A. Thomas
  • Robert L. Hammond
  • Susuma Isoda
  • Larry W. Stephenson
Chapter
Part of the NATO ASI Series book series (NSSA, volume 263)

Abstract

Due to genetic predisposition and, even more frequently, due to habitual mistreatment, (e.g., by malnutrition, smoking, etc.), the human cardiovascular system is particularly prone to massive failure, (occlusion of the blood vessels due to atherosclerosis or thromboembolism, cardiac insufficiency due to myocardial infarct, congestive heart failure), and repair, (angioplasty, cardiac transplantation). Both the anatomical repair of malfunctioning blood vessels and/or their replacement by grafting autologous blood-conduits are only partially successful: a large percentage (up to 30%) of all angioplasty as well as (coronary) bypass procedures eventually fail mainly due to re-stenosis. Similarly, although the percentage of 5-year survivors after cardiac transplantation has dramatically risen since the introduction of potent immunosuppressants, there are increasing signs of long-term adverse effects of these drugs on other organs. Furthermore, the rejection process per se is not abrogated, and often it manifests itself in the form of accelerated atherosclerosis in the blood vessels of the transplanted tissues (Mills et al. 1992). Last but certainly not least, the availability of suitable donor hearts is extremely limited, so that, eventually, most of the potential cardiac transplant patients will never receive a donor heart and die while on the waiting list. Thus, there is an increasing world-wide demand for permanent cardiovascular prostheses, such as vascular grafts, cardiac assist devices or total artificial hearts. However, currently, the long-term use of such prostheses poses serious problems, such as neointimal hyperplasia and occlusion, sepsis, thromboembolism, and calcification. Most of these complications can be traced back to the inadequate hemocompatibility of the (polymeric) blood contacting surfaces in these devices. At the previous NATO ASI on angiogenesis we delineated the ongoing attempts by us and others to restore “nature’s biocompatible blood container” through “factitious angiogenesis”, i.e., by precoating the luminal surfaces of these prostheses with a functional, nonthrombogenic monolayer of autologous endothelial cells (ECs) prior to implantation (Lelkes et al.1992). In this chapter we discuss new evidence, indicating that endothelialization of the blood contacting surface in some cardiovascular prostheses may occur through “genuine” angiogenic processes.

Keywords

Luminal Surface Vascular Graft Angiogenic Process Total Artificial Heart Cellular Coverage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acker M.A., Mannion J.D. and Stephenson L.W. (1986) Methods of transforming skeletal muscle into a fatigue-resistant state: potential for cardiac assistance. In Biomechanical cardiac assist: cardiomyoplasty and muscle powered devices (ed. R.C.-J. Chiu), Futura Pub.Co., pp. 19–28. Mount Kisco, N.Y.Google Scholar
  2. Acker M.A., Anderson W.A., Hammond R.L., Chin A.J., Buchanan J.W., Morse C.C., Kelly A.M. and Stephenson L.W. (1987) Skeletal muscle ventricles in circulation: one to eleven weeks’ experience. J Thorac Cardiovasc Surg, 94, 163–174.PubMedGoogle Scholar
  3. Anderson D.R., Pochettino A., Hammond R.L., Hohenhaus E., Spanta A.D., Bridges C.R.,Jr., Lavine S., Bhan R.D., Colson M. and Stephenson L.W. (1991) Autogenously lined skeletal muscle ventricles in circulation: up to nine months’ experience. J Thorac Cardiovasc Surg, 101, 661–670.PubMedGoogle Scholar
  4. Callow A.D. (1990) The vascular endothelial cell as a vehicle for gene therapy. J Vasc Surg, 11, 793–798.PubMedGoogle Scholar
  5. Eberl T., Siedler S., Schumacher B., Zilla P., Schlaudraff K. and Fasol R. (1992) Experimental in vitro endothelialization of cardiac valve leaflets. Ann Thorac Surg, 53, 487–492.PubMedCrossRefGoogle Scholar
  6. Gao H., Lelkes P.I., Edgerton J.R., Flemma R.J. and Christensen C.W. (1990) Endothelialized latissimus dorsi pouches as possible replacements for cardiac muscle. Pharmacologist, 32, 123. (Abstract)Google Scholar
  7. Golden M.A., Hanson S.R., Kirkman T.R., Schneider P.A. and Clowes A.W. (1990) Healing of polytetrafluoroethylene arterial grafts is influenced by graft porosity. J Vasc Surg, 11, 838–845.PubMedGoogle Scholar
  8. Greisler H.P., Klosak J.J., Dennis J.W., Karesh S.M., Ellinger J. and Kim D.U. (1987) Biomaterial pretreatment with ECGF to augment endothelial cell proliferation. J Vasc Surg, 5, 393–402.Google Scholar
  9. Greisler H.P., Cziperle D.J., Kim D.U., Garfield J.D., Petsidas D., Murchan P.M., Applegren E.O., Drohan W. and Burgess W.H. (1992) Enhanced endothelialization of expanded polytetrafluoroethylene grafts by fibroblast growth factor type 1 pretreatment. Surgery, 112 (2), 244–255.PubMedGoogle Scholar
  10. Hoffman D., Gong G., Liao K., Macaluso F., Nikolic S.D. and Frater R.W.M. (1992) Spontaneous host endothelial growth on bioprostheses. Circulation, 86[suppl II], II-75–II-79.Google Scholar
  11. Horan P.K., Melnicoff M.J., Jensen B.D. and Slezak S.E. (1990) Fluorescent cell labeling for in vivo and in vitro cell tracking. Meth in Cell Biol, 33, 469–490.CrossRefGoogle Scholar
  12. Hudlicka O. (1992) Role of mechanical factors in angiogenesis under physiological and pathophysiological circumstances. In Angiogenesis in Health and Disease (eds. M.E. Maragoudakis, P. Gullino and P.I. Lelkes), Plenum Publishing Co., pp. 207–215. New York, LondonGoogle Scholar
  13. Kaehler J., Zilla P., Fasol R., Deutsch M. and Kadletz M. (1989) Precoating substrate and surface configuration determine adherence and spreading of seeded endothelial cells on polytetrafluoroethylene grafts. J Vasc Surg, 9, 535–541.PubMedGoogle Scholar
  14. Kent K.C., Shindo S., Ikemoto T. and Whittemore A.D. (1989) Species variation and the success of endothelial cell seeding. J Vasc Surg, 9, 271–276.PubMedGoogle Scholar
  15. Kohler T.R., Stratton J.R., Kirkman T.R., Johansen K.H., Zierler B.K. and Clowes A.W. (1992) Conventional versus high-porosity polytetrafluoroethylene grafts: clinical evaluation. Surgery, 112, 901–907.PubMedGoogle Scholar
  16. Lelkes P.I., Gao H., Flemma R.J., Edgerton J.R. and Christensen C.W. (1990) Endothelial cell seeding of latissimus dorsi pouches: possible use as skeletal muscle ventricles. Clin Res, 38, 497. (Abstract)Google Scholar
  17. Lelkes P.I. and Samet M.M. (1991) Endothelialization of the luminal sac in artificial cardiac prostheses: a challenge for both biologists and engineers. J Biomech Eng, 113, 132–142.PubMedCrossRefGoogle Scholar
  18. Lelkes P.I., Samet M.M., Christensen C.W. and Amrani D.L. (1992) Factitious angiogenesis: endothelialization of artificial cardiovascular prostheses. In Angiogenesis in health and disease (eds. M.E. Maragoudakis, P. Gullino and P.I. Lelkes), Plenum Press, pp. 339–353.New York,NYGoogle Scholar
  19. Lelkes P.I., Gao H., Edgerton J.R. and Christensen C.W. (1994) Endothelial cell seeding of latissimus dorsi muscle pouches. J Surg Res, in Press.Google Scholar
  20. Lin H.B., Sun W., Mosher D.F., Garcia-Echeverria C., Schaufelberger K., Lelkes P.I. and Cooper S.L. (1994) Endothelial cell adhesion and growth on polyurethanes: effect of RGD-peptide incorporation. J Biomed Mat Res,in press.Google Scholar
  21. Magovern G.J. (1991) Introduction to the history and development of skeletal muscle plasticity and its clinical application to cardiomyoplasty and skeletal muscle ventricle. Sem Thorac Card Surg, 3, 95–97.Google Scholar
  22. Massia S.P. and Hubbell J.A. (1992) Tissue engineering in the vascular graft. Cytotechnology, 10, 189–204.PubMedCrossRefGoogle Scholar
  23. Menger M.D., Hammersen F., Walter P. and Messmer K. (1990) Neovascularization of prosthetic vascular grafts. quantitative analysis of angiogenesis and microhemodynamics by means of intravital microscopy. Thorac Cardiovasc Surgeon, 38, 139–145.CrossRefGoogle Scholar
  24. Mills Jr.,R.M., Billett J.M. and Nichols W.W. (1992) Endothelial dysfunction early after heart transplantation. Circulation, 86, 1171–1174.CrossRefGoogle Scholar
  25. Miwa H., Matsuda T., Kondo K., Tani N., Fukaya Y., Morimoto M. and Iida F. (1992) Improved patency of an elastomeric vascular graft by hybridization. ASAIO Trans, 38, No. 3, M512–M515.CrossRefGoogle Scholar
  26. Nabel E.G., Plautz G. and Nabel G.J. (1992) Transduction of a foreign histocompatibility gene into the arterial wall induces vasculitis. Proc.Natl.Acad.Sci. USA, 89, 5157–5161.PubMedCrossRefGoogle Scholar
  27. Niu S., Matsuda T. and Oka T. (1990) In vitro model of endothelialization at anastomotic sites. Trans Am Soc Artif Intern Organs, 36, M757–M760.Google Scholar
  28. Niu S. and Matsuda T. (1992) Endothelial cell senescence inhibits unidirectional endothelialization in vitro. Cell Transplantation, 1, 355–364.PubMedGoogle Scholar
  29. Noishiki Y., Yamane Y., Tomizawa Y., Okoshi T., Satoh S., Wildevuur C.R.H. and Suzuki K. (1992) Rapid endothelialization of vascular prostheses by seeding autologous venous tissue fragments. J Thorac Cardiovasc Surg, 104, No. 3, 770–778.Google Scholar
  30. Papadimitriou E., Unsworth B.R., Maragoudakis M.E. and Lelkes P.I. (1993) Time-course and quantitation of extracellular matrix maturation in the chick chorioallantoic membrane and in cultured endothelial cells. Endothelium Google Scholar
  31. Park P.K., Jarrell B.E., Williams S.K., Carter T.L., Rose D.G., Martinez-Hernandez A. and Carabasi R.A.,III (1990) Thrombus-free, human endothelial surface in the midregion of a Dacron vascular graft in the splanchnic venous circuit-observations after nine months of implantation. J Vasc Surg, 11, 468–475.PubMedGoogle Scholar
  32. Pette D. (1991) Changes in phenotype expression of stimulated skeletal muscle. In Cardiomyoplasty (eds. A. Carpentier, J.C. Chachques and P.A. Grandjean), Bakken Reserach Center Series, volume 3, Futura Publishing Company, Inc., pp. 19–31. Mount Kisco, NYGoogle Scholar
  33. Pochettino A., Anderson D.R., Hammond R.L., Spanta A.D., Hohenhause E., Niinami H., Huiping L., Ruggiero R., Hooper T.L., Baars M., Devireddy C. and Stephenson L.W. (1991) Skeletal muscle ventricles: a promising treatment option for heart failure. J Card Surg, 6 (1), 145–153.PubMedGoogle Scholar
  34. Rosengart T.K., Kupferschmid J.P., Ferrans V.J., Casscells W., Maciag T. and Clark R.E. (1988) Heparin-binding growth factor-I (endothelial cell growth factor) binds to endothelium in vivo. J Vasc Surg, 7, 311–317.PubMedGoogle Scholar
  35. Rupnick M.A., Hubbard F.A., Pratt K., Jarrell B.E. and Williams S.K. (1991) Endothelialization of vascular prosthetic surfaces after seeding or sodding with human microvascular endothelial cells. J Vasc Surg, 9 No 6, 788–795.Google Scholar
  36. Salmons S. and Jarvis J.C. (1992) Cardiac assistance from skeletal muscle: a critical appraisal of the various approaches. Br Heart J, 68, 333–338.PubMedCrossRefGoogle Scholar
  37. Schneider P.A., Hanson S.R., Price T.M. and Harker L.A. (1990) Confluent durable endothelialization of endarterectomized baboon aorta by early attachment of cultured endothelial cells. J Vasc Surg, 11, 365–372.PubMedGoogle Scholar
  38. Seeger J.M. and Klingman N. (1988) Improved in vivo endothelialization of prosthetic grafts by surface modification with fibronectin. J Vasc Surg, 8, 476–482.PubMedGoogle Scholar
  39. Thomas G.A., Lelkes P.I., Chick D.M., Isoda S., Lu H., Nakajima H., Hammond R.L., Walters H.L. and Stephenson L.W. (1993a) Skeletal muscle ventricles seeded with autogenous endothelium. ASAIO J.,(In Press)Google Scholar
  40. Thomas G.A., Lelkes P.I., Chick D.M., Lu H., Kowal T.A., Hammond R.L., Nakajima H., Spanta A.D. and Stephenson L.W. (1993b) Skeletal muscle ventricles seeded with allogenic endothelial cells via open and percutaneous techniques. J Surg Res,(In Press)Google Scholar
  41. Wilson J.M., Birinyi L.K., Salomon R.N., Libby P., Callow A.D. and Mulligan R.C. (1989) Implantation of vascular grafts lined with genetically modified endothelial cells. Science, 244, 1344–1346.PubMedCrossRefGoogle Scholar
  42. Zilla P., Fasol R., Deutsch M., Fischlein T., Minar E., Hammerle A., Krapicka O. and Kadletz M. (1987) Endothelial cell seeding of dacron and polytetrafluoroethylene grafts: the cellular events of healing. Surgery, 6, 535–541.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Peter I. Lelkes
    • 1
  • Dawn M. Chick
    • 1
  • Mark M. Samet
    • 1
  • Viktor Nikolaychik
    • 1
  • Gregory A. Thomas
    • 2
  • Robert L. Hammond
    • 2
  • Susuma Isoda
    • 2
  • Larry W. Stephenson
    • 2
  1. 1.Laboratory of Cell BiologyUniversity of Wisconsin Medical School, Milwaukee Clinical CampusMilwaukeeUSA
  2. 2.Division of Cardiothoracic SurgeryWayne State UniversityDetroitUSA

Personalised recommendations