Skip to main content

Therapeutic Angiogenesis in Surgery and Oncology

  • Chapter
Book cover Angiogenesis

Part of the book series: NATO ASI Series ((NSSA,volume 263))

  • 85 Accesses

Abstract

The aim of this presentation is to demonstrate the pathological importance of microenvironmental tissue hypoxia and to elucidate a general treatment concept for this situation which we have termed therapeutic angiogenesis 1. Hypoxia not only represents an insufficient oxygen supply for the cells of a given tissue area but is also regarded as an indicator for their metabolic deprivation and the concomitant accumulation of waste products. Therapeutic angiogenesis applied either with clinically established methods or using novel ways, which are the objectives of laboratory research and clinical trials at present, or in so far hypothetical forms, should lead to an expansion of the functional microvascular space resulting in an increased nutritive blood flow. Thus microregional oxygen availability should be elevated and directly counteract local tissue hypoxia. The problems of nutritional deprivation and waste product accumulation are also treated by therapeutic angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Höckel, M., Schienger, K., Doctrow, S., Kissel, T., and Vaupel, P. Therapeutic angiogenesis. Arch. Surg., 128: 423–429, 1993.

    Article  PubMed  Google Scholar 

  2. Jonsson, K., Jensen, J.A., Goodson, W.H., and Hunt, T.K. Wound healing in subcutaneous tissue of surgical patients in relation to oxygen availability Surg. Fonnn, 37: 86–88, 1986.

    Google Scholar 

  3. Hunt, T.K., and Pai, M.P. The effect of varying ambient oxygen tensions on wound metabolism and collagen synthesis. Surg. Gynecol. Obstet., 135: 561–567, 1972.

    PubMed  CAS  Google Scholar 

  4. Pai, M.P., and Hunt, T.K. Effect of varying oxygen tensions on healing of open wounds. Surg. Gynecol. Obstet., 135: 756–758, 1972.

    PubMed  CAS  Google Scholar 

  5. Jonsson, K., Hunt, T.K., and Mathes, S.J. Effect of environmental oxygen on bacterial induced tissue necrosis in flaps. Surg. Forum, 35: 589–591, 1984.

    Google Scholar 

  6. Knighton, D.R., Halliday, B., and Hunt, T.K. Oxygen as an antibiotic: The effect of inspired oxygen on infection. Arch. Surg., 119: 199–204, 1984.

    Article  PubMed  CAS  Google Scholar 

  7. Brown, J.M. Tumor hypoxia, drug resistance, and metastases. J. Natl. Cancer Inst., 82: 338–339, 1990.

    Article  PubMed  CAS  Google Scholar 

  8. Coleman, C.N. Hypoxia in tumors: a paradigm for the approach to biochemical and physiologic heterogeneity. J. Natl. Cancer Inst., 80: 310–317, 1988.

    Article  PubMed  CAS  Google Scholar 

  9. Moulder, J.E., and Rockwell, S. Hypoxic fractions of solid tumors: experimental techniques, methods of analysis, and a survey of existing data. IN. J. Radial. Oncol. Biol. Phys., 10. 695–712, 1984.

    Article  CAS  Google Scholar 

  10. Powers, W.E., and Tolmach, L.J. A multicomponent X-ray survival curve for mouse lymphosarcoma cells irradiated in vivo. Nature, 197: 710–711, 1963.

    Article  PubMed  CAS  Google Scholar 

  11. Rice, G.C., Hoy, C., and Schimke, R.T. Transient hypoxia enhances the frequency of dihydrofolate reductase gene amplification in chinese hamster ovary cells. Proc. Natl. Acad. Sci. USA, 83: 5978–5982, 1986.

    Article  PubMed  CAS  Google Scholar 

  12. Teicher, B.A., Holden, S.A., Al-Achi, A., and Herman, T.S. Classification of antineoplastic treatments by their differential toxicity toward putative oxygenated and hypoxic tumor subpopulations in vivo in the FSaIIC murine fibrosarcoma. Cancer Res., 50: 3339–3344, 1990.

    PubMed  CAS  Google Scholar 

  13. Gerweck, L.E., Nygaard, T.G., and Burlett, M. Response of cells to hyperthermia under acute and chronic hypoxic conditions. Cancer Res., 39: 966–972, 1979.

    PubMed  CAS  Google Scholar 

  14. Overgaard, J. Effect of hyperthermia on the hypoxic fraction in an experimental mammary carcinoma in vivo. Br. J. Radiol., 54: 245–249, 1981.

    Article  PubMed  CAS  Google Scholar 

  15. Chapman, J.D. The detection and measurement of hypoxic cells in solid tumors. Cancer, 54: 2441–2449, 1984.

    Article  PubMed  CAS  Google Scholar 

  16. Gray, L.H., Conger, A.D., Ebert, M., Homsey, S., and Scott, O.C.A. The concentration of oxygen dissolved in tissues at the time of irradiation as a factor in radiotherapy. Br. J. Radiol., 26: 638–648, 1953.

    Article  PubMed  CAS  Google Scholar 

  17. Drescher, E.E., and Gray, L.H. Influence of oxygen tension on X-ray induced damage in Ehrlich ascites tumor cells irradiated in vitro and in vivo. Radiol. Res., 11: 115–146, 1959.

    Article  Google Scholar 

  18. Durand, R.E. Keynote address: The influence of microenvironmental factors on the activity of radiation and drugs. Int. J. Rad. One. Biol. Phys., 20: 253–258, 1991.

    Article  CAS  Google Scholar 

  19. Young, S.D., Marshall, R.S., and Hill, R.P. Hypoxia induces DNA oveiueplication and enhances metastatic potential of murine tumor cells. Proc. Natl. Acad. Sci., 85: 9533–9537, 1988.

    Article  PubMed  CAS  Google Scholar 

  20. Höckel, M., Schienger, K., Knoop, C., and Vaupel, P. Oxygenation of carcinomas of the uterine cervix: Evaluation by computerized 02 tension measurements. Cancer Res., 51: 6098–6102, 1991.

    PubMed  Google Scholar 

  21. Höckel, M., Knoop, C., Schienger, K., Vomdran, B., Baußmann, E., Mitze, M., Knapstein, P.G., and Vaupel, P. Intratumoral p02 predicts survival in advanced cancer of the uterine cervix. Radiotherapy and Oncology, 26: 45–50, 1993.

    Article  PubMed  Google Scholar 

  22. Hoshino, S., Hamada, O., Iwaya, F., Takahira, H., and Honda, K. Omental transplantation for chronic occlusive arterial diseases. Int. Surg., 64: 21–29, 1979.

    PubMed  CAS  Google Scholar 

  23. Goldsmith, H.S. Salvage of end stage ischemic extremities by intact omentum. Surgery, 88: 732–736, 1980.

    PubMed  CAS  Google Scholar 

  24. Hoshino, S., Nakayama, K., Igari, T., and Honda, K. Long-term results of omental transplantation for chronic occlusive arterial diseases. Int. Surg., 68: 47–50, 1983.

    PubMed  CAS  Google Scholar 

  25. In: “The Greater Omentum,” Liebermann-Meffert, D.; White, H.,ed., Springer, Berlin (1983).

    Google Scholar 

  26. Maurya, S.D., Singhal, S., Gupta, H.C., Elhence, I.P., and Sharma, B D Pedicled omental grafts in the revascularization of ischemic lower limbs in Buerger’s disease. Int. Surg., 70: 253–255, 1985.

    PubMed  CAS  Google Scholar 

  27. Pevec, W.C., Hendricks, D., Rosenthal, M.S., Shestak, K.C., Steed, D.L., and Webster, M.W. Revascularization of an ischemic limb by use of a muscle pedicle flap: A rabbit model. J. Vasc. Surg., 13: 385–390, 1991.

    Article  PubMed  CAS  Google Scholar 

  28. Mathes, N. Classification of the vascular anatomy of muscles: Experimental and clinical correlation. Plast. Reconstr. Surg., 67: 177–187, 1981.

    Google Scholar 

  29. Nottebeart, M., Lane, J.M., Juhn, A., Burstein, A., Schneider, R., Klein, C., Sinn, R.S., Dowling, C., Cornell, C., and Catsimpoolas, N. Omental angiogenic lipid fraction and bone repair. An experimental study in the rat. J. Orthop. Res., 7: 157–169, 1989.

    Article  Google Scholar 

  30. Anthony, J.P., Mathes, S.J., and Alpert, B.S. The muscle flap in the treatment of chronic lower extremity osteomyelitis: Results in patients over 5 years after treatment. Plast. Reconstr. Surg., 88: 311 1991.

    Article  PubMed  CAS  Google Scholar 

  31. Jones, N.F., Eadie, P., Johnson, P.C., and Mears, D.C. Treatment of chronic infected hip arthroplasty wounds by radical debridement and obliteration with pedicled and free muscle flaps. Plast. Reconstr. Surg., 88: 95 1991.

    Article  PubMed  CAS  Google Scholar 

  32. Phillips, G.D., and Knighton, D.R. Angiogenic activity in damaged skeletal muscle (43025). P.S.E.B.M., 193: 197–202, 1990.

    CAS  Google Scholar 

  33. Green, H., Kehinde, O., and Thomas, J. Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc. Natl. Acad. Sci. USA, 76: 5665–5668, 1979.

    Article  PubMed  CAS  Google Scholar 

  34. Romagnoli, G., De Luca, M., Faranda, F., Bandelloni, R., Franzi, A.T., Cataliotti, F., and Cancedda, R. Treatment of posterior hypospadias by the autologous graft of cultured urethral epithelium. N. Engl. J. Med., 323: 527–530, 1990.

    Article  PubMed  CAS  Google Scholar 

  35. Eisenstein, R. Angiogenesis in arteries: Review. Phannac. Ther., 49: 1–19, 1991.

    Google Scholar 

  36. Odedra, R., and Weiss, J.B. Low molecular weight angiogenesis factors. Phannac. Ther., 49: 111–124, 1991.

    Article  CAS  Google Scholar 

  37. Lynch, S.E., Colvin, R.B., and Antoniades, H.N. Growth factors in wound healing. Single and synergistic effects on partial thickness porcine wounds. J. Clin. Invest., 84: 640–646, 1989.

    Article  PubMed  CAS  Google Scholar 

  38. Laato, M., Niinikoski, J., Lebel, L., and Gerdin, B. Stimulation of wound healing by epidermal growth factor (EGF): A dose dependent effect. Ann. Surg., 203: 379–381, 1986.

    Article  PubMed  CAS  Google Scholar 

  39. Buckley, A., Davidson, J.M., Kamerath, C.D., and Woodward, S.C. Epidermal growth factor increases granulation tissue formation dose dependently. J. Surg. Res., 43: 322–328, 1987.

    Article  PubMed  CAS  Google Scholar 

  40. Broadley, K.N., Aquino, A.M., and Hicks, B. Growth factors -FGF and TGF-betaaccelerate the rate of wound repair in normal and in diabetic rats. Int. J. Tiss. Reac., 10: 345–353, 1988.

    CAS  Google Scholar 

  41. Brown, G.L., Curtsinger, L.J., White, M., Mitchell, R.D., Pietsch, J., Nordquist, R., von Fraunhofer, A., and Schultz, G.S. Acceleration of tensile strength of incisions treated with EGF and TGF-beta. Ann. Surg., 208: 788–794, 1988.

    Article  PubMed  CAS  Google Scholar 

  42. Brown, G.L., Nanney, L.B., Griffen, J., Cramer, A.B., Yancey, J.M., Curtsinger L.J., Holtzin, L., Schultz, G.S., Jurkiewicz, M.J., and Lynch, J.B. Enhancement of wound healing by topical treatment with epidermal growth factor. N. Engl. J. Med., 321: 76–79, 1989.

    Article  PubMed  CAS  Google Scholar 

  43. Langer, R., and Moses, M. Biocompatible controlled release polymers for delivery of polypeptides and growth factors. J. Cell. Biochem., 45: 340–345, 199L

    Google Scholar 

  44. Chu, G.H., Ogawa, Y., and McPherson, J.M. Collagen wound healing matrices and process for their production. Collagen Corp. 990; WO 90/00060.

    Google Scholar 

  45. Kopecek, J., and Ulbrich, K. Biodegradation of biomedical polymers. Prog. Polym. Sci., 9: 1–58, 1983.

    Article  CAS  Google Scholar 

  46. Höckel, M., Ott, S., Siemann, U., and Kissel, T. Prevention of peritoneal adhesions in the rat with sustained intraperitoneal dexamethasone delivered by a novel therapeutic system. Ann. Chirurg. Gynaecol., 76: 306–313, 1987.

    Google Scholar 

  47. In: “Novel drug delivery,” Prescott, L.F.; Nimmo, W.S.,ed., Wiley and Sons, Chichester (UK ) (1989).

    Google Scholar 

  48. Kissel, T., Brich, Z., Bantle, S., Lancranjan, I., Nimmerfall, F., and Vit, P. Parenteral depot systems on the basis of biodegradable polyesters. J. Contr. Rel.,in press.

    Google Scholar 

  49. Edington, H.D., Sugarbaker, P.H., and McDonald, H.D. Management of the surgically traumatized, irradiated, and infected pelvis. Surgery, 103: 690–697, 1987.

    Google Scholar 

  50. Mathes, S. J., Feng, L.J., and Hunt, T. Coverage of the infected wound. Ann. Surg., 198: 420–426, 1983.

    Article  PubMed  CAS  Google Scholar 

  51. Eshima, I., Mathes, S.J., and Paty, P. Comparison of the intracellular bacterial killing activity of leukocytes in musculocutaneous and random-pattern flaps. Plast. Reconstr. Surg., 86: 541–547, 1990.

    Article  PubMed  CAS  Google Scholar 

  52. Knighton, D.R., Ciresi, K.F., Fiegel, B.S., Austin, L.L., and Butler, E.L. Classification and treatment of chronic nonhealing wounds. Ann. Surg., 204: 322–330, 1986.

    Article  PubMed  CAS  Google Scholar 

  53. Burgos, H., Herd, A., and Bennett, J.P. Placental angiogenic and growth factors in the treatment of chronic varicose ulcers: preliminary communication. J. Royal Soc. Med., 82: 598–599, 1989.

    CAS  Google Scholar 

  54. Knighton, D.R., Ciresi, K.F., Fiegel, V.D., Schumerth, S., Butler, E., and Cerra, F. Stimulation of repair in chronic, nonhealing, cutaneous ulcers using platelet derived wound healing formula. Surg., Gynecol. and Obstet. 170:: 56–60, 1990.

    Google Scholar 

  55. Hase, S., Nakazawa, S., Tsukamoto, Y., and Segawa, K. Effects of prednisolone and human epidermal growth factor on angiogenesis in granulation tissue of gastric ulcer induced by acetic acid. Digestion, 42: 135–142, 1989.

    Article  PubMed  CAS  Google Scholar 

  56. Folkman, J., Szabo, S., Stovroff, M., McNeil, P., Li, W., and Shing, Y. Duodenal ulcer. Discovery of a new mechanism and development of angiogenic therapy that accelerates healing. Ann. Surg., 214: 414–427, 1991.

    Article  PubMed  CAS  Google Scholar 

  57. tenDijke, P., and Iwata, K.K. Growth factors for wound healing. Biol. Technology, 7: 793–798, 1989.

    Article  CAS  Google Scholar 

  58. Unger, E.F., Sheffield, C.D., and Epstein, S.E. Creation of anastomoses between an extracardiac artery and the coronary circulation. Proof that myocardial angiogenesis occurs and can provide nutritional blood flow to the myocardium. Circulation, 82: 1449–1466, 1990.

    Article  PubMed  CAS  Google Scholar 

  59. Myers, B. Understanding flap necrosis. Plast. Reconstr. Surg., 77: 813–814, 1986.

    Google Scholar 

  60. Heckel, M., and Burke, J.F. Angiotropin treatment prevents flap necrosis and enhances dermal regeneration in rabbits. Arch. Surg., 124: 693–698, 1989.

    Article  Google Scholar 

  61. McGregor, I.A., and Morgan, G. Axial and random pattern flaps. Br. J. Plast. Surg., 26: 202–213, 1973.

    Article  PubMed  CAS  Google Scholar 

  62. in: “The Arterial Anatomy of Skin Flaps,” Cormack, G.C.; Lamberty, B.G.H.,ed., Churchill Livingstone, New York (1986).

    Google Scholar 

  63. Eppley, B.L., Connolly, D.T., Winkelmann, T., Sadove, A.M., Heuvelman, D., and Feder, J. Free bone graft reconstruction of irradiated facial tissue: Experimental effects of basic fibroblast growth factor stimulation. Plast. Reconstr. Surg., 88: 1, 1991.

    Article  PubMed  CAS  Google Scholar 

  64. Penkert, G., Bini, W., and Samii, M. Revascularization of nerve grafts: An experimental study. J. Reconstr. Microsurg., 4: 319–325, 1988.

    Article  PubMed  CAS  Google Scholar 

  65. Ohta, H., Ishiyama, J., Saito, H., and Nishiyama, N. Effects of pretreatment with basic fibroblast growth factor, epidermal growth factor and nerve growth factor on neuron survival and neovascularization of superior cervical ganglion transplanted into the third ventricle in rats. Japan. J. Phannacol., 55: 255–262, 1991.

    Article  CAS  Google Scholar 

  66. Cordeiro, P.G., Seckel, B.R., Lipton, S.A., D’Amore, P.A., Wagner, J., and Madison, R. Acidic fibroblast growth factor enhances peripheral nerve regeneration in vivo. Plast. Reconstr. Surg., 83: 1013–1019, 1989.

    Article  PubMed  CAS  Google Scholar 

  67. Lyons, M.K., Anderson, R.E., and Meyer, F.B. Basic fibroblast growth factor promotes in vivo cerebral angiogenesis in chronic forebrain ischemia. Brain Res., 558: 315–320, 1991.

    Article  PubMed  CAS  Google Scholar 

  68. Lawrence, T.W., Sporn, M.B., Gorschboth, C., Norton, J.A., and Grotendorst, G.R. The reversal of an adriamycin induced healing impairment with chemoattractants and growth factors. Ann. Surg., 203: 142–147, 1986.

    Article  PubMed  CAS  Google Scholar 

  69. Mooney, D.P., Gamelli, R.L., and O’Reilly, M. Improved wound healing through the local delivery of tumor necrosis factor. Surg. Forum, 39: 77–79, 1988.

    Google Scholar 

  70. Curtsinger, L.J., Pietsch, J.D., Brown, G.L., von Fraunhofer, A., Ackerman, D., Polk, H.C. J., and Schultz, G.S. Reversal of adriamycin-impaired wound healing by transforming growth factor-beta. Surg. Gynecol. Obstet., 168: 517–522, 1989.

    PubMed  CAS  Google Scholar 

  71. Latoo, M., Jyrki, H., Veli, M.K., Niinikkoski, J., and Gerdin, B. Epidermal growth factor (EGF) prevents methylprednisolone induced inhibition of wound healing. J. Surg. Res., 47: 354–359, 1989.

    Article  Google Scholar 

  72. Eliseenko, V.I., Skobelkin, O.K., Chegin, V.M., and Degtyarev, M.K. Microcirculation and angiogenesis during wound healing by first and second intention. Bull. Exp. Biol. Med., 105: 289–292, 1988.

    Article  Google Scholar 

  73. Schienger, K., Höckel, M., Schwab, R., and Frischmann-Berger, R. How to improve the uterotomy healing. I Effects of fibrin and tumor necrosis factor alpha in the rat uterotomy model. J. Surg. Res., in press

    Google Scholar 

  74. Greisler, H.P., Klosak, J.J., Dennis, J.W., Karesh, S.M., Ellinger, J., and Kim, D.U. Biomaterial pretreatment with ECGF to augment endothelial cell proliferation. J. Vasc. Surg., 5: 393–402, 1987.

    PubMed  CAS  Google Scholar 

  75. Clowes, A.W., and Kohler, T. Graft endothelialization: The role of angiogenic mechanisms. J. Vasc. Surg., 13: 734–736, 1991.

    Article  PubMed  CAS  Google Scholar 

  76. Buntrock, P., Jentzsch, K.D., and Heder, G. Stimulation of wound healing, using brain extract with fibroblast growth factor (FGF) activity. Exptl. Path., 21: 46–53, 1982.

    Article  CAS  Google Scholar 

  77. Buckley, A., Davidson, J.M., Kamerath, C.D., Wolt, T.B., and Woodward, S.C. Sustained release of epidermal growth factor accelerates wound repair. Proc. Natl. Acad. Sci. USA, 82: 7340–7344, 1985.

    Article  PubMed  CAS  Google Scholar 

  78. Winet, H., Bao, J.Y., and Moffat, R. A control model for tibial cortex neovascularization in the bone chamber. J. Bone Mineral Res., 5: 19–30, 1990.

    Article  CAS  Google Scholar 

  79. Gills, J.P., and McIntyre, L.G. Growth factors and their promising future. J. Amer. Optom. Assoc., 60: 442–445, 1989.

    CAS  Google Scholar 

  80. Woost, P.G., Brightwell, J., Eiferman, A., and Schultz, G. Effect of growth factors with dexamethasone on healing of rabbit corneal stromal incisions. Exptl. Eye Res., 40: 47–60, 1985.

    Article  CAS  Google Scholar 

  81. Schultz, G.S., White, M., Mitchell, R., Brown, G., Lynch, J., Twardzik, D.R., and Todaro, G.J. Epithelial wound healing enhanced by transforming growth factor alpha and vaccinia growth factor. Science, 235: 350–352, 1987.

    Article  PubMed  CAS  Google Scholar 

  82. Nanny, L.B. Epidermal and dermal effects of epidermal growth factor during wound repair. J. Invest. Dennatol., 94: 624–629, 1990.

    Article  Google Scholar 

  83. Hoskins, W., and Rubin, S. Surgery in the treatment of patients with advanced ovarian cancer. Semin. OncoL, 18: 213–221, 1991.

    PubMed  CAS  Google Scholar 

  84. Simpson-Herren, L., Sanford, A.H., and Holmquist, J.P. Effects of surgery on the cell kinetics of residual tumor. Cancer Treat. Rep., 60: 1749–1760, 1976.

    PubMed  CAS  Google Scholar 

  85. Gunduz, N., Fisher, B., and Saffer, E.A. Effect of surgical removal on the growth and kinetics of residual tumor. Cancer Res., 39: 3861–3865, 1979.

    PubMed  CAS  Google Scholar 

  86. Wong, R.J., and DeCosse, J.J. Cytoreductive surgery. Gynecol. and Obstet., 170: 279–281, 1990.

    Google Scholar 

  87. Höckel, M., Knapstein, P.G., and Kutzner, J. A novel combined operative and radiotherapeutic treatment approach for recurrent gynecologic malignant lesions infiltrating the pelvic wall. Surg., Gynecol. and Obstet., 173: 297–302, 1991.

    Google Scholar 

  88. Höckel, M., and Knapstein, P.G. The combined operative and radiotherapeutic treatment (CORI) of recurrent tumors infiltrating the pelvic wall: First experience with 18 patients. GynecoL Oncol., 46. 20–28, 1992.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Höckel, M., Schlenger, K., Frischmann-Berger, R., Berger, S., Vaupel, P. (1994). Therapeutic Angiogenesis in Surgery and Oncology. In: Maragoudakis, M.E., Gullino, P.M., Lelkes, P.I. (eds) Angiogenesis. NATO ASI Series, vol 263. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9188-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9188-4_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9190-7

  • Online ISBN: 978-1-4757-9188-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics