Advertisement

Angiogenesis pp 149-170 | Cite as

Angiogenesis in Vitro: Cytokine Interactions and Balanced Extracellular Proteolysis

  • Michael S. Pepper
  • Jean-Dominique Vassalli
  • Lelio Orci
  • Roberto Montesano
Chapter
Part of the NATO ASI Series book series (NSSA, volume 263)

Abstract

The blood vascular system is composed of a series of vessels of varying structural complexity. All blood vessels are lined by a monolayer of quiescent endothelial cells, which provide a structural and functional barrier between circulating blood and the surrounding tissues. In their simplest form, as represented by capillaries, blood vessels are surrounded by a basement membrane composed of type IV collagen, laminin, proteoglycans and other glycoproteins. A second cell type, namely the pericyte, is often associated with the capillary wall.

Keywords

Endothelial Cell Vascular Endothelial Growth Factor Basic Fibroblast Growth Factor Microvascular Endothelial Cell Endothelial Cell Proliferation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antonelli-Orlidge A., Saunders K.B., Smith S.R. and D’Amore PA. (1989): An activated form of transforming growth factor B is produced by cocultures of endothelial cells and pericytes. Proc. Natl. Acad. Sci. USA 86: 4544–4548.Google Scholar
  2. Bacharach E., Itin A., and Keshet E. (1992): In vivo patterns of expression of urokinase and its inhibitor PAI-1 suggest a concerted role in regulating physiological angiogenesis. Proc. Natl. Acad. Sci. USA 89: 10686–10690.Google Scholar
  3. Baird A. and Durkin T. (1986): Inhibition of endothelial cell proliferation by type-B transforming growth factor: interactions with acidic and basic fibroblast growth factors. Biochem. Biophys. Res. Commun. 138: 476–482.PubMedCrossRefGoogle Scholar
  4. Bautch V.L., Toda S., Hassell JA. and Hanahan D. (1987): Endothelial tumors develop in transgenic mice carrying polyoma middle T oncogene. Cell 51: 529–538.PubMedCrossRefGoogle Scholar
  5. Del Rosso M., Fibbi G., Dini G., Grappone C., Pucci M., Caldini R., Magnelli L., Fimiani M., Lotti T. and Panconesi E. (1990): Role of specific membrane receptors in urokinase-dependent migration of human keratinocytes. J. Invest. Dermatol. 94: 310–316.Google Scholar
  6. Evans H.M. (1909): On the development of the aortae, cardinal and umbilical veins, and the other blood vessels of vertebrate embryos from capillaries. Anat. Rec. 3: 498–519.CrossRefGoogle Scholar
  7. Ferrara N., Jakeman L., Houck, K. and Leung D.W. (1992a): Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocrine Rev. 13: 18–32.Google Scholar
  8. Ferrara N, Winer J. and Henzel W.J. (1992b): Pituitary follicular cells secrete an inhibitor of aortic endothelial cell growth: identification as leukemia inhibitory factor. Proc. Natl. Acad. Sci. USA 89: 698–702.Google Scholar
  9. Fibbi G., Ziche M., Morbidelli L., Magnelli L. and Del Rosso M. (1988): Interaction of urokinase with specific receptors stimulates mobilization of bovine adrenal capillary endothelial cells. Exp. Cell Res. 179: 385–395.Google Scholar
  10. Flaumenhaft R and Rifkin D B (1992): The extracellular regulation of growth factor action. Mol. Biol. Cell 3: 1057–1065.PubMedGoogle Scholar
  11. Folkman J. and Klagsbrun M. (1987): Angiogenic factors. Science 235: 442–447.PubMedCrossRefGoogle Scholar
  12. Fotsis T., Pepper M. Aldercreutz H., Fleischmann G., Hase T., Montesano R. and Schweigerer L. (1993): Genistein, a dietary-derived inhibitor of in vitro angiogenesis. Proc. Natl. Acad. Sci. USA 90: 2690–2694.Google Scholar
  13. Fràter-Schröder M., Müller G., Birchmeier W. and Bohlen P. (1986): Transforming growth factor-beta inhibits endothelial cell proliferation. Biochem. Biophys. Res. Commun. 137: 295–302.Google Scholar
  14. Gajdusek C.M. and Carbon S. (1989): Injury-induced release of basic fibroblast growth factor from bovine aortic endothelium. J. Cell. Physiol. 139: 570–579.PubMedCrossRefGoogle Scholar
  15. Grondahl-Hansen J., Kirkeby L.T., Ralfkiaer E., Kristensen P., Lund L.R. and Dan0 K. (1989): Urokinase-type plasminogen activator in endothelial cells during acute inflammation of the appendix. Am. J. Pathol. 135: 631–636.Google Scholar
  16. Gudewicz P.W. and Gilboa N. (1987): Human urokinase-type plasminogen activator stimulates chemotaxis of human neutrophils. Biochem. Biophys. Res. Commun. 147: 1176–1181.PubMedCrossRefGoogle Scholar
  17. Heimark R.L., Twardzik D.R. and Schwartz S.M. (1986): Inhibition of endothelial regeneration by type-beta transforming growth factor from platelets. Science 233: 1078–1080.PubMedCrossRefGoogle Scholar
  18. Hilton D.J. (1992): LIF: lots of interesting functions. Trends Biochem. Sci. 17: 72–76.Google Scholar
  19. Klagsbrun M. and D’Amore P:A. (1991): Regulators of angiogenesis. Ann. Rev. Physiol. 53: 217–239. Nathan C. and Sporn M. (1991): Cytokines in context. J. Cell Biol. 113: 981–986.Google Scholar
  20. Madri JA., Pratt B.M. and Tucker A.M. (1988): Phenotypic modulation of endothelial cells by transforming growth factor-ß depends on the composition and organization of the extracellular matrix. J. Cell Biol. 106: 1357–1384.CrossRefGoogle Scholar
  21. McNeil P.L., Muthukrishnan L., Warder E. and D’Amore PA. (1989): Growth factors are released by mechanically wounded endothelial cells. J. Cell Biol. 109: 811–822.PubMedCrossRefGoogle Scholar
  22. Merwin J.R., Anderson J.M., Kocher O., van Itallie C.M. and Madri JA. (1990): Transforming growth factor betal modulates extracellular matrix organization and cell-cell junctional complex formation during in vitro angiogenesis. J. Cell. Physiol. 142: 117–128.Google Scholar
  23. Mignatti P., Mazzieri R. and Rifkin D.B. (1991): Expression of urokinase receptor in vascular endothelial cells is stimulated by basic fibroblast growth factor. J. Cell Biol. 113: 1193–1202.PubMedCrossRefGoogle Scholar
  24. Mignatti P., Tsuboi R., Robbins E. and Rifkin D.B. (1989): In vitro angiogenesis on the human amniotic membrane: requirement for basic fibroblast growth factor-induced proteinases. J. Cell Biol. 108: 671–682.PubMedCrossRefGoogle Scholar
  25. Montesano R. and Orci L. (1985): Tumor-promoting phorbol esters induce angiogenesis in vitro. Cell 42: 469–477.PubMedCrossRefGoogle Scholar
  26. Montesano R., Pepper M.S., Vassalli J.-D. and Orci L. (1987): Phorbol ester induces cultured endothelial cells to invade a fibrin matrix in the presence of fibrinolytic inhibitors. J. Cell. Physiol. 132: 460–466.Google Scholar
  27. Montesano R., Pepper M.S. and Orci L. (1993): Paracrine induction of angiogenesis in vitro by Swiss 3T3 fibroblasts. J. Cell Sci., in press.Google Scholar
  28. Montesano R., Vassalli J.-D., Baird A., Guillemin R. and Orci L. (1986): Basic fibroblast growth factor induces angiogenesis in vitro. Proc. Natl. Acad. Sci. USA 83: 7297–7301.Google Scholar
  29. Moscatelli D., Presta M. and Rifkin D.B. (1986): Purification of a factor from human placenta that stimulates capillary endothelial cell protease production, DNA synthesis and migration. Proc. Natl. Acad. Sci. USA 83: 2091–2095.Google Scholar
  30. Moscatelli D. and Rifkin D.B. (1988): Membrane and matrix localization of proteases: a common theme in tumor invasion and angiogenesis. Biochim. Biophys. Acta 948: 67–85.PubMedGoogle Scholar
  31. Müller G., Behrens J., Nussbaumer U., Böhlen P. and Birchmeier W. (1987): Inhibitory action of transforming growth factor ß on endothelial cells. Proc. Natl. Acad. Sci. USA 84: 5600–5604.Google Scholar
  32. Muthukrishnan L., Warder E. and McNeil P.L. (1991): Basic fibroblast growth factor is efficiently released from a cytosolic storage site through plasma membrane disruptions of endothelial cells. J. Cell. Physiol. 148: 1–16.Google Scholar
  33. Nusrat A.R. and Chapman HA. (1991): An autocrine role for urokinase in phorbol ester-mediated differentiation of myeloid cell lines. J. Clin. Invest. 87: 1091–1097.PubMedCrossRefGoogle Scholar
  34. Odekon L.E., Sato Y. and Rifkin D.B. (1992): Urokinase-type plasminogen activator mediates basic fibroblast growth factor-induced bovine endothelial cell migration independent of its proteolytic activity. J. Cell. Physiol. 150: 258–263.Google Scholar
  35. Pardenaud L., Yassine F., Dieterlen-Lièvre F. (1989): Relationship between vasculogenesis, angiogenesis and haemopoiesis during avian ontogeny. Development 105: 437–485.Google Scholar
  36. Pepper M.S. (1992): Angiogenesis in vitro: interactions between angiogenesis-modulating cytokines and the role of balanced extracellular proteolysis. M.D. thesis, Faculty of Medicine, University of Geneva. 120 p.Google Scholar
  37. Pepper M.S., Belin D., Montesano R., Orci L. and Vassalli J.-D. (1990): Transforming growth factor beta 1 modulates basic fibroblast growth factor-induced proteolytic and angiogenic properties of endothelial cells in vitro. J. Cell Biol. 111: 743–755.PubMedCrossRefGoogle Scholar
  38. Pepper M.S., Ferrara N., Orci L. and Montesano R. (1991a): Vascular endothelial growth factor (VEGF) induces plasminogen activators and plasminogen activator inhibitor-1 in microvascular endothelial cells. Biochem. Biophys. Res. Commun. 181: 902–906.Google Scholar
  39. Pepper M.S., Ferrara N., Orci L. and Montesano R. (1992a): Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem. Biophys. Res. Commun. 189: 824–831.Google Scholar
  40. Pepper M.S. and Montesano R. (1991): Proteolytic balance and capillary morphogenesis. Cell Diff. Dev. 32: 319–328.Google Scholar
  41. Pepper M.S., Montesano R., Orci L. and Vassalli J.-D. (1991b): Plasminogen activator inhibitor-1 is induced in microvascular endothelial cells by a chondrocyte-derived transforming growth factor-beta. Biochem. Biophys. Res. Commun. 176: 633–638.Google Scholar
  42. Pepper M.S., Sappino A.-P., Montesano R., Orci L. and Vassalli J.-D. (1992b): Plasminogen activator inhibitor-1 is induced in migrating endothelial cells. J. Cell. Physiol. 153: 129–139.Google Scholar
  43. Pepper M.S., Sappino A.-P., Stöcklin R., Montesano R., Orci L. and Vassalli J.-D. (1993a): Upregulation of urokinase receptor expression on migrating endothelial cells. J. Cell Biol., in press.Google Scholar
  44. Pepper M.S., Vassalli J.-D., Montesano R. and Orci L. (1987): Urokinase-type plasminogen activator is induced in migrating capillary endothelial cells. J. Cell Biol. 105, 2535–2541.PubMedCrossRefGoogle Scholar
  45. Pepper M.S., Vassalli J.-D., Montesano R. and Orci L. (1991c): Chondrocytes inhibit endothelial sprout formation in vitro: evidence for involvement of a transforming growth factor-beta. J. Cell. Physiol. 146: 170–179.Google Scholar
  46. Pepper M.S., Vassalli J.-D., Orci L. and Montesano R. (1993b): Biphasic effect of transforming growth factor-131 on in vitro angiogenesis. Exp. Cell Res. 204: 356–363.Google Scholar
  47. Phillips G.D., Whitehead R.A. and Knighton D.R. (1992): Inhibition by methylprednisolone acetate suggests an indirect mechanism for TGF-B induced angiogenesis. Growth Factors 6: 77–84.PubMedCrossRefGoogle Scholar
  48. Rabbani S.A., Desjardins J., Bell A.W., Banville D., Mazar A., Henkin J., and Goltzman D. (1990): An amino-terminal fragment of urokinase isolated from a prostate cancer cell line (PC-3) is mitogenic for osteoblast-like cells. Biochem. Biophys. Res. Commun. 173: 1058–1064.Google Scholar
  49. Rabbani SA., Mazar A, Bernier S., Haq M., Bolivar I., Henkin J., and Goltzman D. (1992): Structural requirements for the growth factor activity of the amino-terminal domain of urokinase. J. Biol. Chem. 267: 14151–14156.Google Scholar
  50. Risau W., Sariola H., Zerwes H.-G., Sasse J., Ekblom P., Kemler R. and Doetschman T. (1988): Vasculogenesis and angiogenesis in embryonic stem cell derived embryoid bodies. Development 102: 471478.Google Scholar
  51. Roberts A.B., Sporn M.B., Assoian R.K., Smith J.M., Roche N.S., Wakefield LA., Heine U.I., Liotta LA., Falanga V., Kehrl J.H. and Fauci A.S. (1986): Transforming growth factor B: Rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc. Natl. Acad. Sci. USA 83: 4167–4171.Google Scholar
  52. Saksela O., Moscatelli D. and Rifkin D.B. (1987): The opposing effects of basic fibroblast growth factor and transforming growth factor beta on the regulation of plasminogen activator in capillary endothelial cells. J. Cell Biol. 105: 957–963.PubMedCrossRefGoogle Scholar
  53. Sato Y. and Rifkin D.B. (1988): Autocrine activities of basic fibroblast growth factor: regulation of endothelial cell movement, plasminogen activator synthesis and DNA synthesis. J. Cell Biol. 107: 11991205.Google Scholar
  54. Sato Y. and Rifkin D.B. (1989): Inhibition of endothelial cell movement by pericytes and smooth muscle cells: activation of a latent transforming growth factor-ßl-like molecule by plasmin during co-culture. J. Cell Biol. 109: 309–315.PubMedCrossRefGoogle Scholar
  55. Vassalli J.-D., Sappino A.-P. and Belin D. (1991): The plasminogen activator/plasmin system. J. Clin. Invest. 88: 1067–1072.Google Scholar
  56. Wahl S.M., Hunt DA., Wakefield L.M., McCartney-Francis N., Wahl L.M., Roberts A.B. and Sporn M.B. (1987): Transforming growth factor beta (TGF-beta) induces monocyte chemotaxis and growth factor production. Proc. Natl. Acad. Sci. USA 84: 5788–5792.Google Scholar
  57. Weisman D.M., Polverini P.J., Kamp D.W. and Leibovich S.J. (1988): Transforming growth factor-beta (TGFß) is chemotactic for human monocytes and induces their expression of angiogenic activity. Biochem. Biophys. Res. Commun. 157: 793–800.Google Scholar
  58. Williams R.L., Courtneidge SA. and Wagner E.F. (1988): Enbryonic lethalities and endothelial tumors in chimeric mice expressing polyoma virus middle T oncogene. Cell 52: 121–131.PubMedCrossRefGoogle Scholar
  59. Yang E.Y. and Moses H.L. (1990): Transforming growth factor ßl-induced changes in cell migration, proliferation and angiogenesis in the chicken chorioallantoic membrane. J. Cell Biol. 111: 731–741.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Michael S. Pepper
    • 1
  • Jean-Dominique Vassalli
    • 1
  • Lelio Orci
    • 1
  • Roberto Montesano
    • 1
  1. 1.Department of MorphologyUniversity Medical CenterGeneva 4Switzerland

Personalised recommendations