Angiogenesis pp 493-557 | Cite as

Abstracts of Posters

  • Michael E. Maragoudakis
Part of the NATO ASI Series book series (NSSA, volume 298)


Nitric Oxide Vascular Endothelial Growth Factor Basic Fibroblast Growth Factor Hereditary Hemorrhagic Telangiectasia Vascular Endothelial Growth Factor mRNA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Purification from a human hepatoma cell line of a basic fibroblast growth factor-like molecule that stimulates capillary endothelial cell plasminogen activator production, DNA synthesis and migration, M. Presta Mol. Cell. Biol. 1986, 6:4060PubMedGoogle Scholar
  2. 2.
    A six-amino acid deletion in basic fibroblast growth factor dissociates its mitogenic activity from its plasminogen activator-inducing activity, A. Isacchi Proc. Natl. Acad. Sci. USA 1991, 88:2628–26–32PubMedCrossRefGoogle Scholar
  3. 3.
    Structure-function relationship of basic fibroblast growth factor: site-directed mutagenesis of a putative heparin-binding and receptor-binding region, M. Presta et. al Biochem. Biophys. Res. Com. 1992, 185(3):1098–1107PubMedCrossRefGoogle Scholar
  4. 4.
    Subcellular localisation and biological activity of Mr 18,000 basic fibroblast growth factor: site-directed mutagenesis of a putative nuclear translocation sequence M. Presta Growth Factors 1993, 9: 269–278PubMedCrossRefGoogle Scholar
  5. 5.
    Diminished heparin binding of a basic fibroblast growth factor mutant is associated with reduced receptor binding, mitogenesis, plasminogen activator induction and in vitro angiogenesis LY. Li Biochemistry 1994, 33:10999–11007PubMedCrossRefGoogle Scholar
  6. 1.
    Pathogenesis of atherosclerosis: state of the art. C.C. Haudenschild. Cardiovascular Drugs and Therapy 1990, 4:993–1004PubMedCrossRefGoogle Scholar
  7. 2.
    The pathogenesis of atherosclerosis: a perspective for the 1990s. R. Ross. Nature 1993, 362:801–809PubMedCrossRefGoogle Scholar
  8. 3.
    Cellular mechanisms of atherogenesis. PE. DiCorleto. American Journal of Hypertension 1993, 6(11 Pt 2): 314S–318SCrossRefGoogle Scholar
  9. 4.
    Tumor necrosis factor-activates smooth muscle cell migration in culture and is expressed in the balloon-injured rat aorta. S. Jovinge, A. Hultgardh-Nilsson, J. Regnstrom and J. Nilsson. Arteiosclerosis, Thrombosis and Vascular Biology 1997, 17: 490–497CrossRefGoogle Scholar
  10. 5.
    Endothelial cell inflammatory responses to tumor necrosis factor. Ceramide-dependent and -independent mitogen-activated protein kinase cascades. V. Modur, GA. Zimmerman, SM. Prescott and TM. McIntyre. The Journal of Biological Chemistry 1996, 271(2): 13094–13102PubMedCrossRefGoogle Scholar
  11. P. Koolwijk et al., 1996. Cooperative effect of TNFa, bFGF and VEGF on the formation of tubular structures of human microvascular endothelial cells in a fibrin matrix. Role of urokinase activity. J. Cell. Biol. 1996, 132: 1177–1188.PubMedCrossRefGoogle Scholar
  12. Burton, G. J., Palmer, M.E., 1989, The chorioallantoic capillary plexus of the chicken embryo: a microvascular corrosion casting study. Scann. Microsc. 3: 549–558.Google Scholar
  13. DeFouw, D.O., Rizzo, V. J., Steinfeld, R., Feinberg, R. J., 1989, Mapping of the microcirculation in the chick chorioallantoic membrane during normal angiogenesis. Microv. Res. 38: 136–147.CrossRefGoogle Scholar
  14. Fenton, B., Zweifach, B. W., 1981, Microcirculatory model relating geometrical variation to changes in pressure and flow rate. Ann. Biomed. Eng. 9: 303–321.CrossRefGoogle Scholar
  15. Folkman, J., 1985, Tumor angiogenesis. Adv. Cancer Res. 43: 172–203.Google Scholar
  16. Konerding, M. A., 1991, Scanning electron microscopy of corrosion casts in medicine. Scanning Microsc. 5: 851–865.PubMedGoogle Scholar
  17. Konerding, M. A., Miodonski, A. J., Lametschwandter, A., 1995, Microvascular corrosion casting in the study of tumor vascularity: a review. Scanning Microsc. 9: 1233–1244.PubMedGoogle Scholar
  18. Lametschwandtner, A., Lametschwandtner, U., Weiger, T., 1990, Scanning electron microscopy of vascular corrosion casts — technique and applications: updated review. Scanning Microsc. 4: 889–941.PubMedGoogle Scholar
  19. Malkusch, W., Konerding, M. A., Klapthor, B., Bruch, J., 1995, A simple and accurate method for 3-D measurements in microcorrosion casts illustrated with tumor vascularization. A. Cell. Path. 9: 69–81.Google Scholar
  20. Maragoudakis, M. E., Sarmonika, M., & Panoutsakopoulou, M., 1988, Rate of basement membrane biosynthesis as an index to angiogenesis. Tissue and Cell 20: 531–539.PubMedCrossRefGoogle Scholar
  21. Tsopanoglou, N. E., Pipili-Synetos, E., Maragoudakis, M. E., 1993, Thrombin promotes angiogenesis by a mechanism independent of fibrin formation. Am. J. Phys., 264: 1302–1307.Google Scholar
  22. Maragoudakis, M. E., Sarmonika, M., & Panoutsakopoulou, M., 1988, Rate of basement membrane biosynthesis as an index to angiogenesis. Tissue and Cell, 20: 531–539.PubMedCrossRefGoogle Scholar
  23. Malkusch, W., Konerding, M. A., Klapthor, B., Bruch, J., 1995, A simple and accurate method for 3-D measurements in microcorrosion casts illustrated with tumor vascularization. A. Cell. Path., 9: 69–81.Google Scholar
  24. Fenton, B., Zweifach, B. W., 1981, Microcirculatory model relating geometrical variation to changes in pressure and flow rate. Ann. Biomed. Eng., 9: 303–321.CrossRefGoogle Scholar
  25. Kaipainen A., Korhonen, J., Mustonen, T., van Hinsbergh, V.W.M., Fang, G-H, Dumont D., Breitman, M., Alitalo K. Expression of the FLT4 Receptor tyrosine kinase becomes restricted to lympatic endothelium during development. Proc. Natl. Acad. Sci., USA 92: 3566–3570, 1995.PubMedCrossRefGoogle Scholar
  26. 1.
    Taraboletti G, Garofalo A, Belotti D, Drudis T, Borsotti P, Scanziani E, Brown PD, and Giavazzi R. Inhibition of angiogenesis and murine hemangioma growth by Batimastat, a synthetic inhibitor of matrix metalloproteinases. J Natl Cancer Inst 87:293–298,1995.PubMedCrossRefGoogle Scholar
  27. 2.
    Brown PD and Giavazzi R. Matrix Metalloproteinase inhibition: A review of antitumor activity. Annals of Oncology 6:967–974, 1995PubMedGoogle Scholar
  28. 3.
    Belotti D, Vergani V, Drudis T, Borsotti P, Pitelli MR, Viale G, Giavazzi R and Taraboletti G. The microtubule affecting drug paclitaxel has antiangiogenic activity. Clin Cancer Res 2:1843–1850, 1996PubMedGoogle Scholar
  29. 1.
    Fett J.W. et al., Biochemistry, 1985, 24: 5480PubMedCrossRefGoogle Scholar
  30. 2.
    Riordan J.F. & Vallee B.L., Br. Cancer, 1988, 57: 587CrossRefGoogle Scholar
  31. 3.
    Badet J. et al., Proc. Natl. Acad. Sci. USA, 1989, 86: 8427PubMedCrossRefGoogle Scholar
  32. 4.
    Moore F. & Riordan J.F., Biochemistry 1990, 29: 228PubMedCrossRefGoogle Scholar
  33. 5.
    Lee, F.S. & Vallee B.L., Prog. Nucl. Ac. Res. Mol. Biol., 1993, 44:1CrossRefGoogle Scholar
  34. 1.
    Hansen-Smith, F. M., G. Joswiak and J. Baustert. Regional differences in spontaneously occurring angiogenesis in the adult rat mesentery. Microvasc. Res. 47: 369–76, 1994.PubMedCrossRefGoogle Scholar
  35. 2.
    Hansen-Smith, F.M., L. Watson, D.Y. Lu, and I. Goldstein. Griffonia simplicifolia I: Fluorescent tracer for microcirculatory vessels in non-perfused thin muscles and sectioned muscle. Microvasc. Res. 36: 199–215, 1988.PubMedCrossRefGoogle Scholar
  36. 1.
    Norrby, K. Basic fibroblast growth factor and de novo mammalian angiogenesis. Microvasc. Res. 48: 96–113, 1994.PubMedCrossRefGoogle Scholar
  37. 2.
    Scheer, M., A Haas, F. Hansen-Smith. Distribution of FGF-R during angiogenesis in adult rat mesentery. Microcirc. 2: 99, 1995Google Scholar
  38. Connolly, S., T. Hores, L. Smith, and P. D’Amore Characterization of vacularaa development in the mouse retina. Microvasc. Res. 36: 275–90, 1988PubMedCrossRefGoogle Scholar
  39. 1.
    Hansen-Smith, F.M., L. Morris, G. Joswiak. Postnatal proliferation of microvessels and the distribution of bFGF in rat sternomastoid muscle. FASEB J. 6: A1600, 1992.Google Scholar
  40. 2.
    Hansen-Smith, F.M., K. Banker, L. Morris, G. Joswiak. Alternative histochemical markers for skeletal muscle capillaries. Microvasc. Res. 44: 112–16, 1992.PubMedCrossRefGoogle Scholar
  41. 1.
    Leibovich S.J., Polverini P.J., Shepard H.M., Wiseman D.M., Shively V., Nuseir N. Macrophage-induced angiogenesis is mediated by tumor necrosis factor-a. Nature, 1987, v. 329, p. 630–632.PubMedCrossRefGoogle Scholar
  42. 2.
    Kisseleva E., Becker M., Lemm M., Fichtner I. Involvement of macrophages and cytokines into rejection mechanisms of the drug-resistant and immunogenic murine lymphoma P388/adria. Anticancer Res. 1996, v. 16, p. 1971–1978.PubMedGoogle Scholar
  43. 1.
    Larcher F., Robles A., Duran H., Murillas R., Quintanilla M., Conti C.J., & Jorcano J.L. Upregulation of VEGF/VPF in mouse skin carcinogenesis correlates with malignant progression state and activated H-ras levels. Cancer Res. 56: 5391–5396, 1996.PubMedGoogle Scholar
  44. 2.
    Detmar M. Molecular regulation of angiogenesis in the skin. J. Invest. Dermatol. 106, 207–208, 1996.PubMedCrossRefGoogle Scholar
  45. Acharya K.R. et al., Proc. Natl. Acad. Sci. USA 91, 2915–2919, 1994.PubMedCrossRefGoogle Scholar
  46. Acharya K.R. et al., Proc. Natl. Acad. Sci. USA 92, 2949–2953, 1995.PubMedCrossRefGoogle Scholar
  47. Curran T.P. et al., Biochemistry 32, 2307–2313, 1993.PubMedCrossRefGoogle Scholar
  48. Leonidas D.D. et al., Biochemistry in press.Google Scholar
  49. Olson K.A. et al., Proc. Natl. Acad. Sci. USA 92, 442–446, 1995.PubMedCrossRefGoogle Scholar
  50. Olson K.A. et al., Cancer Res. 54, 4576–4579, 1994.PubMedGoogle Scholar
  51. Russo et al., Proc. Natl. Acad. Sci. USA 93, 1726–1732, 1989.Google Scholar
  52. Shapiro R. et al., Biochemistry 28, 1726–1732, 1989.PubMedCrossRefGoogle Scholar
  53. Shapiro R. & Vallee B.L., Biochemistry 28, 7401–7402, 1989.PubMedCrossRefGoogle Scholar
  54. 1.
    Guttmacher, A.E., D.A. Marchuk, and R.J. White, Hereditary hemorrhagic telangiectasia [see comments]. [Review]. New England Journal of Medicine, 1995. 333(14): p. 918–24.PubMedCrossRefGoogle Scholar
  55. 2.
    McAllister, K.A., et al., Six novel mutations in the endoglin gene in hereditary hemorrhagic telangiectasia type 1 suggest a dominant-negative effect of receptor function. Human Molecular Genetics, 1995. 4(10): p. 1983–5PubMedCrossRefGoogle Scholar
  56. 3.
    Johnson, D.W., et al., Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nature Genetics, 1996. 13(2): p. 189–95.PubMedCrossRefGoogle Scholar
  57. 1-.
    AG Akkan and WJ Malaisse: Insulinotropic action of AICA-riboside. Insulin release by isolated islets and the perfused pancreas. Diabetes Research (1994), 25: 13–23.PubMedGoogle Scholar
  58. 2-.
    DA Bullough, et al: Acadesine (AICA-riboside) prevents oxidant-induced damage in the isolated quinea pig heart. J Pharmacol Exp. Ther (1993) 226 (2): 666–672.Google Scholar
  59. 3-.
    MF Vincent, et al. Inhibition by AICA riboside of gluconeogenesis in isolated rat hepatocytes Diabetes (1991), 40: 1259–1266.Google Scholar
  60. 1.
    D. R. Knighton, T. K. Hunt, K. K. Thakral and W. H. Goodson, Role of platelets and fibrin in the healing sequence: an in vivo study of angiogenesis and collagen synthesis, Ann. Surg. 196: 179(1982).CrossRefGoogle Scholar
  61. 2.
    N. E. Tsopanoglou, E. Pipili-Synetos and M. E. Maragoudakis, Thrombin promotes angiogenesis by a mechanism independent of fibrin formation, Am. J. Physiol. 264: C1302 (1993).Google Scholar
  62. 3.
    M. Ziche, L. Morbidelli, E. Masini, S. Amerini, H. J. Granger, C. A. Maggi, P. Geppetti and F. Ledola, Nitric oxide mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P, J. Clin. Invest. 94: 2036 (1994).PubMedCrossRefGoogle Scholar
  63. 4.
    E. Pipili-Synetos, A. Papageorgiou, E. Sakkoula, G. Sotiropoulou, T. Fotsis, G. Karakioulakis and M. E. Maragoudakis, Inhibition of angiogenesis, tumor growth and metastasis by the NO-releasing vasodilators, isosorbide mononitrate and dinitrate, Br. J. Pharmacol. 116: 1829(1995).PubMedCrossRefGoogle Scholar
  64. 5.
    S. Moncada, M. W. Radomski and R. M. Palmer, Endothelium derived relaxing factor: identification as nitric oxide and role in the control of vascular tone and platelet function, Biochem. Pharmacol. 37: 2495 (1988).PubMedCrossRefGoogle Scholar
  65. 6.
    B. V. Khan, D. G. Harrison, M. T. Olbrych, R. W. Alexander and R. M. Medford, Nitric oxide regulates vascular cell adhesion molecule 1 gene expression and redox-sensitive transcriptional events in human vascular endothelial cells, Proc. Natl. Acad. Sci. U.S.A. 93: 9114 (1996).PubMedCrossRefGoogle Scholar
  66. 7.
    Y. Kubota, H. K. Kleinman, G. R. Martin and T. J. Lawley, Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures, J. Cell Biol. 107: 1589 (1988).PubMedCrossRefGoogle Scholar
  67. WHITTINGTON, R. & FAULDS, D. (1993). Interleukin-2:A Review. Drugs, 46(3), 446–514.PubMedCrossRefGoogle Scholar
  68. DENG, W., THIEL, B., TANNENBAUM, C.S., HAMILTON, T.A. & STUEHR, D.J. (1993). Synergistic cooperation between Tcell lymphokines for induction of the nitric oxide synthase gene in murine peritoneal macrophages. J. Immunol., 151, 322–329.PubMedGoogle Scholar
  69. HIBBS, J.B., WESTENFELDER, C., TAINTOR, R., VAVRIN, Z., KABLITZ, C., BARANOWSKI, R.L., WARD, H., MENLOVE, L., MCMURRRY, M.P., KUSHNER, J.P. & SAMLOWSKI, W.E. (1992). Evidence for cytokine-inducible nitric oxide synthesis from L-arginine in patients receiving interleukin-2 therapy. J. Clin. Invest., 89, 867–877.PubMedCrossRefGoogle Scholar
  70. YIM, C-Y., MCGREGOR, J.R., KWON, O.D., BASTIAN, N.R., REES, M., MORI, M., HIBBS, J.B. & SAMLOWSKI, W.E. (1995). Nitric oxide synthesis contributes to IL-2-induced antitumour responses against intraperitoneal meth A tumour. J. Immunol., 4382–4390.Google Scholar
  71. PIPILI-SYNETOS, E., PAPAGEORGIOU, A., SAKKOULA, E., SOTIROPOULOU, G., FOTSIS, T., KARAGIOULAKIS, G. & MARAGOUDAKIS, M.E. (1995). Inhibition of angiogenesis, tumour growth and metastasis by the NO-releasing vasodilators, isosorbide mononitrate and dinitrate. Br. J. Pharmacol. 116, 1829–1834PubMedCrossRefGoogle Scholar
  72. 1.
    R. Abramovitch, G. Meir and M. Neeman. Neovascularization induced growth of implanted C6 glioma multicellular spheroids: magnetic microimaging Cancer Res. 55: 1956–1962, 1995.PubMedGoogle Scholar
  73. 1.
    Tempel C, Schiffenbauer Y.S., Meir G., Neeman M., Modulation of water diffusion during gonatropin-induced ovulation: NMR microscopy of the ovarian follicle, Mag. Res. Med., 34, 213–218, 1995.CrossRefGoogle Scholar
  74. 2.
    Phillips H.S., Hains J., Leung D. W., Ferrara, N. Vascular Endothelial Growth Factor is expected in rat corpus luteum, Endocrinology, 127, 965–967, 1990.PubMedCrossRefGoogle Scholar
  75. 1).
    Tufro-McReddie et al. Oxygen regulates VEGF-induced vasculogenesis and mephrogenesis. De. Biol (in press), 1997.Google Scholar
  76. 2).
    Tufro-McReddie et al. VEGF induces nephrogenesis and endothelial cell differentiation during Kidney development. Am. J. Physiol: (in press), 1997.Google Scholar
  77. 3).
    Tufro-McReddie et al. Vasculogenesis in metanephric organ culture. J. Am. Soc. Nephrol 7:1606, 1996.Google Scholar
  78. 1.
    Cliff WJ, 1963. Observations on healing tissue: a combined light and electron microscopic investigation. Phil. Trans. Roy. Soc. B 246: 305–325.CrossRefGoogle Scholar
  79. 2.
    Scoazec J-Y, Degott C., Reynes M., Benhamou JP and Feldmann G., 1989. Mechanism of neovascularization: vascular sprouting can occur without proliferation of endothelial cells. Lab. Invest. 51:624–634.Google Scholar
  80. 3.
    Burn PH and Tarek MR, 1990. A novel mechanism of capillary growth in the rat pulmonary microcirculation. Anat. Rec. 228:35–45.CrossRefGoogle Scholar
  81. 4.
    Van Groningen JP, Wenink ACG and Testers LHM, 1991. Myocardial capillaries: increase in the number by splitting of existing vessels. Anat. Embryol. 184:65–70.PubMedCrossRefGoogle Scholar
  82. 5.
    Dawson JM and Hudlicka O., 1993. Can changes in microcirculation explain capillary growth in skeletal muscle? Int. J. Exp. Path. 74: 65–71.Google Scholar
  83. 6.
    Egginton S., and Hudlicka O., 1992. Effect of long-term muscle overload on capillary supply, blood flow and performance in rat fast muscle. J. Physiol. 452:9P.Google Scholar
  84. 7.
    Zhou A-L., Egginton S. and Hudlicka O., 1996. Ultrastructural evidence for a novel mechanism of capillary growth in rat skeletal muscle. J. Physiol. 491: 28P.Google Scholar
  85. 8.
    Zhou A-L. and Egginton S., 1997. Capillary growth in overloaded rat skeletal muscle: an ultrastructural study. J. Physiol., in press.Google Scholar
  86. 9.
    Hansen-Smith F.M., Hudlicka O. and Egginton S. 1996. In vivo angiogenesis in adult rat skeletal muscle: early changes in capillary network architecture and ultrastructure. Cell Tissue Res. 286: 123–136.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Michael E. Maragoudakis
    • 1
  1. 1.University of Patras Medical SchoolPatrasGreece

Personalised recommendations