Advertisement

Angiogenesis pp 355-365 | Cite as

The Role of the Laminin Peptide SIKVAV in the Revascularization of Ischemic Tissue

  • R. Wesley Rose
  • Richard C. Morrison
  • Michael G. Magno
  • John Mannion
  • Hynda K. Kleinman
  • Derrick S. Grant
Chapter
Part of the NATO ASI Series book series (NSSA, volume 298)

Abstract

Angiogenesis is a processes of new capillary formation from preexisting vessels in response to cytokine stimuli. It involves the breakdown of the surrounding basement membrane, proliferation and migration of the endothlial cells which comprise the vessel wall toward the angiogenic stimulus, and subsequent secretion of basement membrane, leading to the formation of a new capillary branch. This process is dynamic, rather than occurring in discrete steps. Angiogenesis is necessary for many physiological (development, reproductive cycle) and pathological (tumor growth and metastasis, wound healing) processes. Previously, several investigators have explored the use of angiogenic agonists in the revascularization of ischemic tissue. We have recently examined in vivo the ability of SIKVAV (a peptide derived from the alpha chain of laminin-1) to revascularize ischemic tissue. In this manuscript, we review the work done with SIKVAV and its role in angiogenesis as it pertains to the revascularization of ischemic tissue.

Keywords

Basic Fibroblast Growth Factor Ischemic Tissue Vascular Endothelial Cell Growth Factor Control Peptide Left Internal Mamary Artery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banai, S., Jaklitsch, M.T., Shou, M., Lazarous, D.F., Scheinowitz, M., Biro, S., Epstein, S.E., & Unger, E.F. (1994). Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs. Circulation, 89(5), 2183–2189.PubMedCrossRefGoogle Scholar
  2. Chleboun, J.O., Martins, R.N., Mitchell, CA., & Chirila, T.V. (1992). bFGF enhances the development of the collateral circulation after acute arterial occlusion. Biochem Biophys Res Comm, 182(2), 510–516.CrossRefGoogle Scholar
  3. Engel, J. (1991). Domains in proteins and proteoglycans of the extracellular matrix with functions in assembly and cellular activities. Int J Biol Macromol, 13(3), 147–151.PubMedCrossRefGoogle Scholar
  4. Goldberg, G.I., Frisch, S.M., He, C, Wilhelm, S.M., Reich, R., & Collier, I.E. (1990). Secreted proteases. Regulation of their activity and their possible role in metastasis. Ann N. Y. Acad. Sci., 580, 375–384.PubMedCrossRefGoogle Scholar
  5. Grant, D.S., Kinsella, J.L., Fridman, R., Auerbach, R., Piasecki, B.A., Yamada, Y., Zain, M., & Kleinman, H.K. (1992). Interaction of endothelial cells with a laminin A chain peptide (SIKVAV) in vitro and induction of angiogenic behavior in vivo. J Cell Physiol, 153(3), 614–25.PubMedCrossRefGoogle Scholar
  6. Grant, D.S., Kleinman, H.K., & Martin, G.R. (1990). The role of basement membranes in vascular development. Ann N Y Acad Sci, 588(61), 61–72.PubMedCrossRefGoogle Scholar
  7. Harada, K., Grossman, W., Friedman, M., Edelman, E.R., Prasad, P.V., Keighley, C.S., Manning, W.J., Sellke, F.W., & Simons, M. (1994). Basic fibroblast growth factor improves myocardial function in cronically ischemic porcine hearts. J. Clin. Invest., 94, 623–630.PubMedCrossRefGoogle Scholar
  8. Hickey, M.J., & Morrison, W.A. (1994). An improved matrix-type controlled release system for basic fibroblast growth factor. Biochem. Biophys. Res. Com., 201(3), 1066–1071.PubMedCrossRefGoogle Scholar
  9. Ingber, D.E., & Folkman, J. (1989). Mechanochemical Switching between Growth and Differentiation during Fibroblast Growth Factor-stimulated Angiogenesis In Vitro: Role of Extracellualr Matrix. J. Cell Biol, 109, 317–330.PubMedCrossRefGoogle Scholar
  10. Kanemoto, T., Martin, G.R., Hamilton, T.C., & Fridman, R. (1991). Effects of synthetic peptides and protease inhibitors on the interaction of a human ovarian cancer cell line (NIH:OVCAR-3) with a reconstituted basement membrane (Matrigel). Invasion Metastasis, 11(2), 84–92.PubMedGoogle Scholar
  11. Kanemoto, T., Reich, R., Royce, L., Greatorex, D., Adler, S.H., Shiraishi, N., Martin, G.R., Yamada, Y., & Kleinman, H.K. (1990). Identification of an amino acid sequence from the laminin A chain that stimulates metastasis and collagenase IV production. Proc. Natl. Acad Sei. USA, 87, 2279–2283.CrossRefGoogle Scholar
  12. Kibbey, M.C., Grant, D.S., & Kleinman, H.K. (1992). Role of the SIKVAV site of laminin in promotion of angiogenesis and tumor growth: An in vivo Matrigel model. J. Nalt. Cancer Inst., 84, 1633–1637.CrossRefGoogle Scholar
  13. Kleinman, H.K., Cannon, F.B., Laurie, G.W., Hassell, J.R., Aumailley, M., Terranova, V.P., Martin, G.R., & Dalcq, M.D.B. (1985). Biological activities of laminin. J. Cell Biol, 27, 317–325.Google Scholar
  14. Kleinman, H.K., Graf, J., Iwamoto, Y., Kitten, G.T., Ogle, R.C., Sasaki, M., Yamada, Y., Martin, G.R., & Luckenbill-Edds, L. (1987). Role of basement membranes in cell differentiation. Ann. N. Y. Acad, of Sci., 513, 134–145.CrossRefGoogle Scholar
  15. Kwolek, C.J., Pomposelli, F.B., Tannenbaum, G.A., Brophy, C.M., Gibbons, G.W., Campbell, D.R., & LoGerfo, F.W. (1992). Peripheral vascular bypass in juvenile-onset diabetes mellitus: are aggrassive revascularization attempts justified? J. Vasc. Surg., 15, 394–401.PubMedCrossRefGoogle Scholar
  16. Malinda, K.M., & Kleinman, H.K. (1996). The Laminins. Int. J. Biochem. Cell Biol., 28(9), 957–959.PubMedCrossRefGoogle Scholar
  17. Oliveira, M., Wilson, S.E., Williams, R., & Freischlag, J.A. (1993). Iliofemoral bypass: a 10-year review. Cardiovascular Surgery, 1(2), 103–106.PubMedGoogle Scholar
  18. Passaniti, A., Taylor, R., Pili, R., Guo, Y., Long, P., Haney, J., Pauly, R., Grant, D., & Martin, G. (1992). A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab Invest, 67(4), 519–28.PubMedGoogle Scholar
  19. Reichle, F.A., & Tyson, R.R. (1974). Femoroperoneal bypass: evaluation of potential for revascularization of the severely ischemic lower extremity. Ann Surg, 181(2), 182–185.CrossRefGoogle Scholar
  20. Rosen, E.M., Zitnik, R.J., Elias, J.A., Bhargava, M.M., Wines, J., & Goldberg, I.D. (1993). The interaction of HGF-SF with other cytokines in tumor invasion and angiogenesis. Exs, 65(301), 301–10.PubMedGoogle Scholar
  21. Sephel, G.C., Tashiro, K.-L, Sasaki, M., Greatorex, D., Martin, G.R., Yamada, Y., & Kleinman, H.K. (1989). Laminin A chain synthetic peptide which supports neunte outgrowth. Biochem. Biophys. Res. Com., 162(2), 821–829.PubMedCrossRefGoogle Scholar
  22. Stonebridge, P.A., & Murie, J.A. (1993). Infralingual revascularization in the diabetic patient. Br. J. Surg., 80, 1237–1241.PubMedCrossRefGoogle Scholar
  23. Yamada, Y., Albini, A., I. Ebihara, Graf, J., Kato, S., Killen, P., Kleinman, H.K., Kohno, K., Martin, G.R., Rhodes, C, Robey, F.A., & Sasaki, M. (1987). Structure, expression, and function of mouse laminin. (eds. J.R. Wolff et al. Springer-Verlag, Berlin, Heidelberg).Google Scholar
  24. Yanagisawa-Miwa, A., Uchida, Y., Nakamura, F., Tomaru, T., & Kido, H. (1992). Salvage of infarcted myocardium by angiogenic action of basic fibroblast growth factor. Science, 257(5075), 1401–3.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • R. Wesley Rose
    • 1
  • Richard C. Morrison
    • 2
  • Michael G. Magno
    • 2
  • John Mannion
    • 2
  • Hynda K. Kleinman
    • 3
  • Derrick S. Grant
    • 1
  1. 1.The Cardeza Foundation for Hematologic ResearchThomas Jefferson UniversityPhiladelphiaUSA
  2. 2.Department of SurgeryThomas Jefferson UniversityPhiladelphiaUSA
  3. 3.National Institute for Dental ResearchNational Institutes of HealthBethesdaUSA

Personalised recommendations