Angiogenesis pp 297-306 | Cite as

Nitric Oxide and Angiogenesis

  • Marina Ziche
Part of the NATO ASI Series book series (NSSA, volume 298)


The steps required for new vessel growth are biologically complex and require coordinate regulation of contributing components, including modifications of cell-cell interactions, proliferation and migration of endothelial cells and matrix degradation involving urokinase-type plasminogen activator (uPA) (Mignatti et al., 1991). The observation that in vivo angiogenesis is accompanied by vasodilation and that many angiogenesis effectors possess vasodilating properties, prompted us to search for evidence of a molecular/ biochemical link between vasodilation and angiogenesis. Indeed both events occur under a strict control exerted by the endothelial cells on the surrounding cellular components.


Nitric Oxide Vascular Endothelial Growth Factor Angiogenic Activity Human Breast Carcinoma Cell Venular Endothelium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brown, L.F., Berse, T., Jackman, R.W., Tognazzi, A., Manseau, E.J., Dvorak, H.F., and Senger, D.R. 1993. Increased expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in kidney and bladder carcinomas. Am. J. Pathol.143: 1255–1262.PubMedGoogle Scholar
  2. Brzozowski, T., Kounturek, S.J., Drozdowicz, D., Dembinski, A., and Stachura, J. 1995. Healing of chronic gastric ulcerations by L-arginine. Digestion 56: 463–471.PubMedCrossRefGoogle Scholar
  3. Claffey, K.P., Brown, L.F., del Aguila, L.F., Tognazzi, K., Yeo, K.-T., Manseau, E.J., and Dvorak, H.F. 1996. Expression of vascular permeability factor/vascular endothelial growth factor by melanoma cells increases tumor growth, angiogenesis, and experimental metastasis. Cancer Res.56: 172–181.PubMedGoogle Scholar
  4. Clark, E.R., and Clark, E.L. 1939. Microscopic observations on the growth of blood capillaries in the living mammal. Am. J. Anat.64:251–299CrossRefGoogle Scholar
  5. Cobbs, CS., Brenman, J.E., Alpade, K.D., Bredt, D.S., and Israel, M.A. 1995. Expression of nitric oxide synthase in human central nervous system tumors. Cancer Res.55: 727–730.PubMedGoogle Scholar
  6. Doi, K., Akaike, T., Horie, H., Noguchi, Y., Fuji, S., Beppu, T., Ogawa, M., and Maeda, H. 1996. Excessive production of NO in rat solid tumor and its implication in rapid tumor growth. Cancer 11: 1598–1604.Google Scholar
  7. Feelish, M., and Noack, E. 1987. Nitric oxide (NO) formation from nitrovasodilators occurs independently of hemoglobin or non-heme iron. Eur. J. Pharmacol.142:465–469.CrossRefGoogle Scholar
  8. Ferrara, N., and Henzel, W.J. 1989. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem. Biophys. Res. Commun.161: 851–858.PubMedCrossRefGoogle Scholar
  9. Friedlander, M., Brooks, P.C., Shaffer, R.W., Kincaid, C.M., Varner, J.A., and Cheresh, D.A. 1995. Definition of two angiogenic pathways by distinct av integrins. Science 270: 1500–1502.PubMedCrossRefGoogle Scholar
  10. Ghigo, D., Arese, M., Todde, R., Vecchi, A., Silvagno, F., Costamagna, C, et al. 1995. Middle T antigen-transformed endothelial cells exhibit an increased activity of nitric oxide synthase. J. Exp. Med.181: 9–19.PubMedCrossRefGoogle Scholar
  11. Hu, D.E., and Fan, T.-P.D. 1993. [Leu8]des-Arg9-bradykinin inhibits the angiogenic effect of bradykinin and interleukin-1 in rats. Br. J. Pharmacol. 109: 14–17.PubMedCrossRefGoogle Scholar
  12. Jenkins, D.C., Charles, LG., Thomsen, L.L., Moss, D.W., Holmes, LS, Baylis, S.A., Rhodes, P., Westmore, K., Emson, P.C., and Moncada, S. 1995. Role of nitric oxide in tumor angiogenesis. Proc. Natl. Acad. Sei. USA 92: 4392–4396.CrossRefGoogle Scholar
  13. Keck, P.J, Hauser, S.D., Krivi, G., Sanzo, K., Warren, T., Feder, J., and Conolly, D.T. 1989. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 246: 1309–1312.PubMedCrossRefGoogle Scholar
  14. Kennovin, G.D., Hirst, D.G., Stratford, M.R.L., and Flitney, F.W. 1994. Inducible nitric oxide synthase is expressed in tumor associated vasculature; inhibition retards tumor growth in vivo. In Biology of Nitric Oxide Vol. 4 Enzymology, Biochemistry and Immunology. S. Moncada, M. Feelish, R. Busse, and E.A. Higgs, editors. Portland Press, London. 473–479.Google Scholar
  15. Kourembanas, S., McQuillan, L. P., Leung, G. K, and Faller, D. V. 1993. Nitric oxide regulates the expression of vasoconstrictors and growth factors by vascular endothelium under both normoxia and hypoxia. J. Clin. Invest.92:99–104.PubMedCrossRefGoogle Scholar
  16. Ku, D.D., Zaleski, J.K., Liu, S., and Brock, T.A. 1993. Vascular endothelial growth factor induces EDRF-dependent relaxation in coronary arteries. Am. J. Physiol. 265: H586-H592.Google Scholar
  17. Leibovicz, JS, Polverini, P.J., Fong, T.W., Harlow, L.A., and Kock, A. E. 1994. Production of angiogenic activity by human monocytes requires an L-arginine/nitric oxide- synthase-dependent effector mechanism. Proc. Natl. Acad. Sci. USA 91: 4190–4194.CrossRefGoogle Scholar
  18. McNeil, P.L., Muthukrishnan, L., Warder, E., and D’Amore, P.A. 1989. Growth factors are released by mechanically wounded cells. J. Cell Biol.109: 811–822.PubMedCrossRefGoogle Scholar
  19. Mignatti, P., Mazzieri, R., and Rifkin, D.B. 1991. Expression of the urokinase receptor in vascular endothelial cells is stimulated by basic fibroblast growth factor. J. Cell Biol.113: 1193–1201.PubMedCrossRefGoogle Scholar
  20. Mignatti, P., Tsuboi, R., Robbins, E., and Rifkin, D.B. 1989. In vitro angiogenesis on the human amniotic membrane: requirement for basic fibroblast growth factor-induced proteinases. J. Cell Biol.108: 671–682.PubMedCrossRefGoogle Scholar
  21. Moncada, S., and Higgs, A. 1993. The L-arginine-nitric oxide pathway. New Engl. J. Med.329: 2002–2012.PubMedCrossRefGoogle Scholar
  22. Moncada, S., Palmer, R. M. J., and Higgs, A. 1991. Nitric Oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev.43:109–142.PubMedGoogle Scholar
  23. Montrucchio, G., Lupia, E., De Martino, A., Battaglia, E., Arese, M., Tizzani, A., Bussolino, F., and Camussi, G. 1997. Nitric oxide mediates angiogenesis induced in vivo by platelt-activating factor and tumor necrosis factor. Am. J. Pathol.151: 557–563.PubMedGoogle Scholar
  24. Morbidelli, L., Chang, C.-H., Douglas, JG., Granger, HJ., Ledda, F., and Ziche, M. 1996. Nitric oxide mediates the mitogenic effect of VEGF on coronary venular endothelium. Am J. Physiol.270(39): H411-H415.Google Scholar
  25. Mulsh, A., Buse, R., Liebau, S., and Fostermann, U. 1988. LY 83583 interferes with the release of endothelium-derived relaxing factor and inhibits soluble guanylate cyclase. J. Pharmacol. Exp. Ther.247: 283–288.Google Scholar
  26. O’Brien, T., Cranston, D., Fuggle, S., Bicknell, R, and Harris, A.L. 1996. Different angiogenic pathways characterize superficial and invasive bladder cancer. Cancer Res.55: 510–513.Google Scholar
  27. Orucevic, A., and Lala, P.K. 1996. N-nitro-L-arginine methyl ester, an inhibitor of nitric oxide synthesis, ameliorates interleukin 2-induced capillary leakage and reduces tumour growth in adenocarcinoma-bearing mice. Br. J. Cancer 73: 189–196.PubMedCrossRefGoogle Scholar
  28. Pipili-Synetos, E., Sakkoula, E., Haralabopoulos, G., Andiopuolou, P., Peristeris, P., and Maragoudakis, M.E. 1994. Evidence that nitric oxide is an endogenous antiangiogenic mediator. Br. J. Pharmacol.111: 894–902.PubMedCrossRefGoogle Scholar
  29. Plate, K.H., Breier, G., Weich, H.A., and Risau, W. 1992. Vascular endothelial growth factor is a potential tumor angiogenesis factor in human gliomas in vivo. Nature 359: 845–848.PubMedCrossRefGoogle Scholar
  30. Presta, M., Moscatelli, D., Joseph-Silverstein, J., and Rifkin, D.B. 1986. Purification from a human hepatoma cell line of a basic fibroblast growth factor-like molecule that stimulates capillary endothelial cell plasminogen activator production, DNA synthesis and migration. Mol. Cell. Biol.6:4060–4066.PubMedGoogle Scholar
  31. Sato, Y., and Rifkin, D.B. 1988. Autocrine activities of basic fibroblast growth factor: regulation of endothelial cell movement, plasminogen activator synthesis and DNA synthesis. J. Cell Biol.107:1199–1205.PubMedCrossRefGoogle Scholar
  32. Schweigerer, L., Neufeld, G, Freidman, J., Abraham, JA., Fiddes, J.C., and Gospodarowicz, D. 1987. Capillary endothelial cells express basic fibroblast growth factor, a mitogen that promotes their own growth. Nature 352:257–259.CrossRefGoogle Scholar
  33. Shweiki, D., Itin, A., Soffer, D., and Keshet, E. 1992. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359:843–845.PubMedCrossRefGoogle Scholar
  34. Thomsen, L.L., Lawton, FG., Knowles, R.G., Beesley, JE., Riveros-Moreno, V., and Moncada, S. 1994. Nitric oxide synthase activity in human gynecological cancer. Cancer Res.54: 1352–1354.PubMedGoogle Scholar
  35. Toi, M., Kondo, S., Suzuki, H., Yamamoto, Y., Inada, K., Imazawa, T., Taniguchi, T., and Tominaga, T. 1996. Quantitative analyses of vascular endothelial growth factor in rimary breast cancer. Cancer Res.11: 1101–1105.Google Scholar
  36. Tsuboi, R., Sato, Y., and Rifkin, D.B. 1990. Correlation of cell migration, cell invasion, receptor number, proteinase production, and basic fibroblast growth factor levels in endothelial cells. J. Cell Biol 110:511–517.PubMedCrossRefGoogle Scholar
  37. Wolff, J.E.A., Guerin, C, Laterra, J., Bressler, J., Indurti, R.R., Brem, H., and Goldstein, G.W. 1993. Dexamethasone reduces vascular density and plasminogen activator activity in 9L rat brain tumors. Brain Res.604: 79–85.PubMedCrossRefGoogle Scholar
  38. Wu, H.M., Qiaobing, H, Yuan, Y, and Granger, H.J. 1996. VEGF induces NO-dependent hyperpermeability in coronary venules. Am. J. Physiol.269 (38): C1371-C1378, 1995.Google Scholar
  39. Xie, K., Huang, S., Dong, Z., Juang, S.-H., Wang, Y., and Fidler, I.J. 1997. Destruction of bystander cells by tumor cells transfected with inducible nitric oxide (NO) synthase gene. J. Natl. Cancer Inst.89: 421–427.PubMedCrossRefGoogle Scholar
  40. Zhang, H.-T., Craft, P., Scott, P.A.E, Ziehe, M., Weich, H.A., Harris, A.L., and Bicknell, R. 1995. Enhancement of tumor growth and vascular density by transfection of vascular endothelial cell growth factor into MCF-7 human breast carcinoma cells. J. Natl. Cancer Inst.87: 213–217.PubMedCrossRefGoogle Scholar
  41. Ziche, M., Morbidelli, L., Choudhuri, R., Zhang, H.-T., Donnini, S., Granger, H.J., and Bicknell, R. Nitric oxide-synthase lies downstream of Vascular Endothelial Growth Factor but not basic Fibroblast Growth Factor induced angiogenesis. J. Clin. Invest., 99: 2625–2634, 1997.PubMedCrossRefGoogle Scholar
  42. Ziehe, M., Morbidelli, L., Geppetti, P., Maggi, CA., and Dolara, P. 1991. Substance P induces migration of capillary endothelial cells: a novel NK-1 selective receptor mediated activity. Life Sci. 48: PL7-PL11.Google Scholar
  43. Ziehe, M., Morbidelli, L., Masini, E., Amerini, S., Granger, HJ., Maggi, CA., Geppetti, P., and Ledda, F. 1994. Nitric oxide mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P. J. Clin. Invest. 94:2036–2044.CrossRefGoogle Scholar
  44. Ziehe, M., Morbidelli, L., Masini, E., Granger, H.J., Geppetti, G., and Ledda, F. 1993. Nitric oxide promotes DNA synthesis and cyclic GMP formation in endothelial cells from postcapillary venules. Biochem. Biophys. Res. Commun.192 (3): 1198–1203.CrossRefGoogle Scholar
  45. Ziehe, M., Morbidelli, L., Pacini, M., Geppetti, P., Alessandri, G., and Maggi, CA. 1990. Substance P stimulates neovascularization in vivo and proliferation of cultured endothelial cells. Microvasc. Res.40: 264–278.CrossRefGoogle Scholar
  46. Ziehe, M., Morbidelli, L., Parenti, A., Amerini, S., Granger, H.J., and Maggi, CA. 1993. Substance P increases cyclic GMP levels on coronary postcapillary venular endothelial cells. Life Sci.53:1105–1112.CrossRefGoogle Scholar
  47. Ziehe, M., Parenti, A., Ledda, F., Dell’Era, P., Granger, HJ., Maggi, CA., and Presta, M. 1997. Nitric oxide promotes proliferation and plasminogen activator production by coronary venular endothelium through endogenous bFGF. Circ. Res., 80: 845–852CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Marina Ziche
    • 1
  1. 1.Dept. PharmacologyUniversity of FlorenceFlorenceItaly

Personalised recommendations