Angiogenesis pp 241-261 | Cite as

Proteases and Angiogenesis. Regulation of Plasminogen Activators and Matrix Metalloproteases by Endothelial Cells

  • Pieter Koolwijk
  • Roeland Hanemaaijer
  • Victor W. M. van Hinsbergh
Part of the NATO ASI Series book series (NSSA, volume 298)


Angiogenesis, the outgrowth of new blood vessels from existing ones, is an essential process during development, but this normally stops when the body becomes adult. In the absence of injury, overt angiogenesis in adults is limited to the reproductive system of females (formation of corpus luteum and placenta). However, the formation of new blood vessels is an essential factor in tissue repair (formation and regression of granulation tissue), which is necessary to restore healthy tissue after wounding and/or inflammation, and is associated with many pathological conditions, such as tumor development and rheumatoid arthritis (Folkman and Klagsbrun, 1987; Liotta et al., 1991; Folkman and Shing, 1992; Montesano, 1992; Colville-Nash and Scott 1992). Fibrin (Dvorak et al., 1992), inflammatory cells (Polverini, 1989) and angiogenic factors (Broadley et al 1989; Klagsburn and D’Amore, 1991; Shweiki et al., 1992; Plate et al., 1992; Sengeret al., 1993; Koch et al., 1994) are commonly observed in angiogenesis associated with disease in man. A series of sequential events can be distinguished during the formation of new microvessels: (i) degradation of the vascular basement membrane and the fibrin or interstitial matrix by endothelial cells; (ii) endothelial cell migration; (iii) endothelial proliferation; and (iv) the formation of new capillary tubes and a new basement membrane (Folkman, 1986).


Endothelial Cell Vascular Endothelial Growth Factor Plasminogen Activator Human Umbilical Vein Endothelial Cell Basic Fibroblast Growth Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Appella, E., Robinson, E. A., Ulrich, S. J., Stoppelli, M. P., Corti, A., Cassani, G., and Blasi, F., 1987, The receptor-binding sequence of urokinase A biological function for the growth-factor module of proteases, J. Biol. Chem. 262:4437–4440.PubMedGoogle Scholar
  2. Bacharach, E., A. Itin, and Keshet, E., 1992, In vivo patterns of expression of urokinase and its inhibitor PAI-1 suggest a concerted role in regulating physiological angiogenesis, Proc. Natl. Acad. Sci. USA. 89:10686–10690.CrossRefPubMedGoogle Scholar
  3. Bachmann, F., 1987, Fibrinolysis, in: Thrombosis and Haemostasis 1987, (M. Verstraete, J. Vermylen, R. Lijnen, and J. Arnout, eds.), pp. 227–265, Leuven University Press, Leuven.Google Scholar
  4. Bachmann, F., 1995, The enigma PAI-2. Gene expression, evolutionary and functional aspects, Thromb. Haemostas. 74:172–179.Google Scholar
  5. Barnathan, E. S., 1992, Characterization and regulation of the urokinase receptor of human endothelial cells, Fibrinolysis, 6:1–9.Google Scholar
  6. Benelli, R., Adatia, R., Ensoli, B., Stetler-Stevenson, W., Santi, L., and Albini, A., 1994, Inhibition of AIDS-kaposi’s sarcoma cell induced endothelial cell invasion by TIMP-2 and a synthetic peptide from the metalloproteinase propeptide: implications for an anti-angiogenic therapy, Oncol. Res, 6: 251–257.PubMedGoogle Scholar
  7. Bikfalvi, A., Sauzeau, C., Moukadiri, H., Maclouf, J., Busso, N., Bryckaert, N., Plouet, J., and Tobelem, G., 1991, Interaction of vasculotropin/vascular endothelial cell growth factor with human umbilical vein endothelial cells — Binding, internalization, degradation, and biological effects, J. Cell Physiol. 149:50–59.CrossRefPubMedGoogle Scholar
  8. Blasi, F., Conese, M., Møller, L. B., Pedersen, N., Cavallaro, U., Cubellis, M., Fazioli, F., Hernandez-Marrero, L., Limongi, P., Munoz-Canoves, P., Resnati, M., Riittinen, L., Sidenius, N., Soravia, E., Soria, M., Stoppelli, M., Talarico, D., Teesalu, T., and Valcamonica, S., 1994, The urokinase receptor: Structure, regulation and inhibitor- mediated internalization, Fibrinolysis, 8:182–188.Google Scholar
  9. Braunhut, S., and Moses, M., 1994, Retinoids modulate endothelial cell production of matrix- degrading proteases and tissue inhibitors of metalloproteinases (timp), J. Biol. Chem. 269:13472–13479.PubMedGoogle Scholar
  10. Broadley, K.N., Aquino, A.M., Woodward, S.C., Buckley-Sturrock, A., Sato, Y., Rifkin, D. and Davidson, J.M., 1989, Monospecific antibodies implicate basic fibroblast growth factor in normal wound repair, Lab. Invest. 61:571–575.PubMedGoogle Scholar
  11. Brooks, P., Strömblad, S., Sanders, L., Von Schalscha, T., Aimes, R., Stetler-Stevenson, W., Quigley, J., and Cheresh, D., 1996, Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3, Cell, 85:683–693.CrossRefPubMedGoogle Scholar
  12. Case, J. P., Lafyatis, R., Remmers, E. F., Kumkumian, G. K., and Wilder, R. L., 1989, Transin Stromelysin Expression in Rheumatoid Synovium — A Transformation-Associated Metalloproteinase Secreted by Phenotypically Invasive Synoviocytes, Am. J. Pathol. 135:1055–1064.PubMedGoogle Scholar
  13. Cole, A., Chubinskaya, S., Schumacher, B., Huch, K., Csszabo, G., Yao, J., Mikecz, K., Hasty, K., and Kuettner, K., 1996, Chondrocyte matrix metalloproteinase-8 — human articular chondrocytes express neutrophil collagenase, J. Biol. Chem. 271:11023–11026.CrossRefPubMedGoogle Scholar
  14. Colucci, M., Paramo, J.A., and Collen, D., 1985, Generation in plasma of a fast-acting inhibitor of plasminogen activator in response to endotoxin stimulation, J. Clin. Invest. 75:818–824.CrossRefPubMedGoogle Scholar
  15. Colville-Nash, P. R., and Scott, D. L., 1992, Angiogenesis and rheumatoid arthritis -Pathogenic and therapeutic implications, Ann. Rheumatic Diseases 51:919–925.CrossRefGoogle Scholar
  16. Conforti, G., Dominguez-Jimenez, C., Rønne, E., Høyer-Hansen, G., and Dejana, E., 1994, Cell-surface plasminogen activation causes a retraction of in vitro cultured human umbilical vein endothelial cell monolayer, Blood, 83:994–1005.PubMedGoogle Scholar
  17. Cornelius, L., Nehring, L., Roby, J., Parks, W., and Welgus, H., 1995, Human dermal microvascular endothelial cells produce matrix metalloproteinases in response to angiogenic factors and migration, J. Invest. Dermatol. 105:170–176.CrossRefPubMedGoogle Scholar
  18. Cossins, J., Dudgeon, T., Catlin, G., Gearing, A., and Clements, J., 1996, Identification of MMP-18, a putative novel human matrix metalloproteinase, Biochem. Biophys. Res. Comm. 228:494–498.CrossRefPubMedGoogle Scholar
  19. Danø, K., Behrendt, N., Brünner, N., Ellis, V., Ploug, M., and Pyke, C., 1994, The urokinase receptor Protein structure and role in plasminogen activation and cancer invasion, Fibrinolysis, 8:189–203.Google Scholar
  20. Denhardt, D.T., Feng, B., Edwards, D.R., Cocuzzi, E.T., Malyankar, U.M., 1993, Tissue Inhibitor of Metalloproteinases (TIMP, aka EPA) — Structure, Control of Expression and Biological Functions, Pharmacology & Therapeutics. 59:329–341CrossRefGoogle Scholar
  21. Desrochers, P. E., Mookhtiar, K., Van Wart, H. E., Hasty, K. A., and Weiss, S. J., 1992, Proteolytic Inactivation of alpha1-Proteinase Inhibitor and alpha1-Antichymotrypsin by Oxidatively Activated Human Neutrophil Metalloproteinases, J. Biol. Chem. 267:5005–5012.PubMedGoogle Scholar
  22. Docherty, A. J. P., J. O’Connell, T. Crabbe, S. Angal, and Murphy, G., 1992, The matrix metalloproteinases and their natural inhibitors: Prospects for the treating degenerative tissue diseases, Trends in Biotechnol. 10:200–207.CrossRefGoogle Scholar
  23. Dumler, I., Petri, T., and Schleuning, W-D., 1993, Interaction of urokinase-type plasminogen activator (u-PA) with its cellular receptor (u-PAR) induces phosphorylation on tyrosine of a 38 kDa protein, FEBS Letters, 322:37–40.CrossRefPubMedGoogle Scholar
  24. Dvorak, H. F., Nagy, J. A., Berse, B., Brown, L. F., Yeo, K-T., Yeo, T-K., Dvorak, A. M., Van De Water, L., Sioussat, T. M., and Senger, D. R., 1992, Vascular permeability factor, fibrin, and the pathogenesis of tumor stroma formation, Ann. N. Y. Acad. Sci., 667:101–111.CrossRefPubMedGoogle Scholar
  25. Emeis, J.J., and Kooistra, T., 1986, Interleukin-1 and lipopolysaccharide induce a fast-acting inhibitor od tissue-type plasminogen activator in vivo and in cultured endothelial cells, J. Exp. Med. 163:1260–1266.CrossRefPubMedGoogle Scholar
  26. Fearns, C., Samad, F., and Loskutoff, D.J., 1996, Synthesis and localization of PAI-1 in the vessel wall, in: Vascular Control of Hemostasis, (V.W.M. van Hinsbergh ed.), pp. 207–226, Harwood Acad. Publ., Amsterdam.Google Scholar
  27. Fisher, C., Gilbertson-Beadling, S., Powers, E., Petzold, G., Poorman, R., and Mitchell, M., 1994, Interstitial collagenase is required for angiogenesis invitro, Develop. Biol. 162:499–510.CrossRefPubMedGoogle Scholar
  28. Foda, H., George, S., Conner, C., Drews, M., Tompkins, D., and Zucker, S., 1996, Activation of human umbilical vein endothelial cell progelatinase a by phorbol myristate acetate: a protein kinase c-dependent mechanism involving a membrane-type matrix metalloproteinase, Lab. Invest. 74:538–545.PubMedGoogle Scholar
  29. Folkman, J., 1986, How is blood vessel growth regulated in normal and neoplastic tissue? G.H.A. Clowes memorial Award lecture, Cancer Res. 46:467–473.PubMedGoogle Scholar
  30. Folkman, J., and Klagsburn, M., 1987, Angiogenic factors, Science 235:442–447.CrossRefPubMedGoogle Scholar
  31. Folkman, J., and Shing, Y., 1992, Angiogenesis, J. Biol. Chem. 267:10931–10934.PubMedGoogle Scholar
  32. Fràter-Schröder, M., Risau, W., Hallman, R., Gautschi, P., and Böhlen, P., 1987, Tumor necrosis factor type, a potent inhibitor of endothelial cell growth in vitro, is angiogenic in vivo, Proc. Natl. Acad Sci. USA, 84:5277–5281.CrossRefPubMedGoogle Scholar
  33. Galardy, R., Grobelny, D., Foellmer, H., and Fernandez, L., 1994, Inhibition of angiogenesis by the matrix metalloprotease inhibitor n-2r-2-(hydroxamidocarbonymethyl)-4- methylpentanoyl)-l-tryptophan methylamide, Cancer Res. 54:4715–4718.PubMedGoogle Scholar
  34. Galis Z.S., Sukhova, G.K., Lark, M.W., and Libby, P., 1994, Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques, J. Clin. Invest. 94:2493–2503.CrossRefPubMedGoogle Scholar
  35. Gomez, D., Yoshiji, H., Kim, J., and Thorgeirsson, U., 1995, Ulex europaeus i lectin induces activation of matrix- metalloproteinase-2 in endothelial cells, Biochem. Biophys. Res. Comm. 216:177–182.CrossRefPubMedGoogle Scholar
  36. Goto, F., K. Goto, K. Weindel, Folkman, J., 1993, Synergistic effect of vascular endothelial growth factor and basic fibroblast growth factor on the proliferation and cord formation of bovine capillary endothelial cells within collagen gels, Lab. Invest. 69:508–517.PubMedGoogle Scholar
  37. Grøndahl-Hansen, J., Kirkeby, L., Ralfkiær, Kristensen, P., Lund, L.R., Danø, K., 1989, Urokinase-type plasminogen activator in endothelial cells during acute inflammtion of the appendix, Am. J. Pathol. 135: 631–636.PubMedGoogle Scholar
  38. Haddock, R. C., Spell, M. L., Baker, C. D., Grammer, J. R., Parks, J. M., Speidel, M., and Booyse, F. M., 1991, Urokinase binding and receptor identification in cultured endothelial cells, J. Biol. Chem., 266:21466–21473.PubMedGoogle Scholar
  39. Hajjar, K.A., and Nachman, R.L., 1988, Endothelial cell-mediated conversion of Glu-plasminogen to Lys-plasminogen. Further evidence for assembly of the fibrinolytic system on the endothelial cell surface, J. Clin. Invest. 82:1769–1778.CrossRefPubMedGoogle Scholar
  40. Hajjar, K.A., 1991, The endothelial cell tissue plasminogen activator receptor. Specific interaction with plasminogen, J. Biol. Chem. 266:21962–21970.PubMedGoogle Scholar
  41. Hajjar, K. A., 1995, Cellular receptors in the regulation of plasmin generation, Thromb. Haemostas., 74:294–301.Google Scholar
  42. Hanemaaijer, R., Koolwijk, P., Leclercq, L., De Vree, W. J. A., and Van Hinsbergh, V. W. M., 1993, Regulation of matrix metalloproteinase expression in human vein and microvascular endothelial cells — Effects of tumour necrosis factor-, interleukin-1 and phorbol ester, Biochem. J., 296:803–809.PubMedGoogle Scholar
  43. Hanemaaijer, R., Sorsa, T., Konttinen, Y.T., Ding, Y., Kylmaniemi, M., Visser, H., van Hinsbergh, V.W.M., Helaakoski, T., Kainulainen, T., Virkkunen, J., Röntä, H., Tschesche, H., and Salo, T., 1997, Matrix Metalloproteinase-8 is Expressed in Rheumatoid Synovial Fibroblasts and Endothelial Cells. Regulation by TNF and Doxycycline, J. Biol. Chem., in press.Google Scholar
  44. Heegaard, C.W., Wiborg Simonsen, A.C., Oka, K., Kjøller, L., Christensen, A., Madsen, B., Ellgaard, L., Chan, L., and Andreasen, P.A., 1995, Very low density lipoprotein receptor binds and mediates endocytosis of urokinase-type plasminogen activator-type-1 plasminogen activator inhibitor complex, J. Biol. Chem. 270:20855–20861.CrossRefPubMedGoogle Scholar
  45. Holmes, W.E., Nelles, L., Lijnen, H.R. and Collen, D., 1987, Primary structure of human 2-antiplasmin, a serine protease inhibitor (Serpin), J. Biol. Chem. 262:1659–1664.PubMedGoogle Scholar
  46. Karelina, T.V., Goldberg, G.I., and Eisen, A.Z., 1995, Matrix metalloproteinases in blood vessel development in human fetal skin and in cutaneous tumors, J. Invest. Dermatol. 105:411–417.CrossRefPubMedGoogle Scholar
  47. Kirchheimer, J. C., Nong, Y., and Remold, H. G., 1988, IFN-, tumor necrosis factor-, and urokinase regulate the expression of urokinase receptors on human monocytes, J. Immunol., 141:4229–4234.PubMedGoogle Scholar
  48. Klagsbrun, M., and D’Amore, P. A., 1991, Regulators of angiogenesis, Ann. Rev. Physiol. 53:217–239.CrossRefGoogle Scholar
  49. Koch, A. E., L. A. Harlow, G. K. Haines, E. P. Amento, E. M. Unemori, W. L. Wong, R. M. Pope, and Ferrara, N. E., 1994, Vascular endothelial growth factor — A cytokine modulating endothelial function in rheumatoid arthritis, J. Immunol. 152:4149–4156.PubMedGoogle Scholar
  50. Koolwijk, P., van Erck, M.G.M., de Vree, W.J.A., Vermeer, M.A., Weich, H.A., Hanemaaijer, R. and van Hinsbergh, V.W.M., 1996, Cooperative effect of TNF, bFGF and VEGF on the formation of tubular structures of human microvascular endothelial cells in a fibrin matrix. Role of urokinase activity, J. Cell Biol. 132:1177–1188CrossRefPubMedGoogle Scholar
  51. Langer, D. J., Kuo, A., Kariko, K., Ahuja, M., Klugherz, B. D., Ivanics, K. M., Hoxie, J. A., Williams, W. V., Liang, B. T., Cines, D. B., and Barnathan, E. S., 1993, Regulation of the endothelial cell urokinase-type plasminogen activator receptor — Evidence for cyclic AMP-dependent and protein kinase-C dependent pathways, Circ. Res., 72:330–340.CrossRefPubMedGoogle Scholar
  52. Leibovich S.J., Polverini, P.J., Shepard, H.M., Wiseman, D.M., Shively, V. and Nuseir, N., 1987, Macrophage-induced angiogenesis is mediated by tumour necrosis factor-, Nature 329:630–632.CrossRefPubMedGoogle Scholar
  53. Liotta, L.A., Steeg, P.S., and Stetler-Stevenson, W.G., 1991, Cancer metastasis and angiogenesis — An imbalance of positive and negative regulation, Cell, 64:327–336.CrossRefPubMedGoogle Scholar
  54. Loskutoff, D.J., 1991, Regulation of PAI-1 gene expression, Fibrinolysis 5: 197–206.Google Scholar
  55. Madri, J. A., L. Bell, M. Marx, J. R. Merwin, C. Basson, and Prinz, C., 1991, Effects of soluble factors and extracellular matrix components on vascular cell behaviour invitro and invivo — Models of de-endothelialization and repair, J. Cell. Biochem. 45:123–130.CrossRefPubMedGoogle Scholar
  56. Mandriota, S., Seghezzi, G., Vassalli, J-D., Ferrara, N., Wasi, S., Mazzieri, R., Mignatti, P. and Pepper, M., 1995, Vascular endothelial growth factor increases urokinase receptor expression in vascular endothelial cells, J. Biol. Chem. 270:9709–9716.CrossRefPubMedGoogle Scholar
  57. Matrisian, L. M., 1992, The Matrix-degrading metalloproteinases, BioEssays 14:455–463.CrossRefPubMedGoogle Scholar
  58. Mignatti, P., Mazzieri, R., and Rifkin, D. B., 1991, Expression of the urokinase receptor in vascular endothelial cells is stimulated by basic fibroblast growth factor, J. Cell Biol. 113:1193–1201.CrossRefPubMedGoogle Scholar
  59. Miles, L.A., Levin, E.G., Plescia, J., Collen, D. and Plow, E.F., 1988, Plasminogen receptors, urokinase receptors, and their modulation on human endothelial cells, Blood 72:628–635.PubMedGoogle Scholar
  60. Miles, L. A., Dahlberg, C. M., Levin, E. G., and Plow, E. F., 1989, Gangliosides interact directly with plasminogen and urokinase and may mediate binding of these fibrinolytic components to cells, Biochem. 28:9337–9343.CrossRefGoogle Scholar
  61. Min, H.Y., Doyle, L.V., Vitt, C.R., Zandonella, C.L., Stratton-Thomas, J.R., Shuman, M.A., Rosenberg, S., 1996, Urokinase receptor antagonists inhibit angiogenesis and primary tumor growth in syngeneic mice, Cancer Res. 56:2428–2433.PubMedGoogle Scholar
  62. Montesano, R., 1992, Regulation of angiogenesis in vitro, Eur. J. Clin. Invest. 22:504–515.CrossRefGoogle Scholar
  63. Moscatelli, D., 1985, Collagenase and plasmin activator production by blood vessel-associated cells in response to angiogenic preparations, in: Intracellular Protein Catabolism (E A Khairallah, J S Bond and J W C Bird Eds.), pp. 669–671, A. R. Liss New York.Google Scholar
  64. Moses, M. A., Sudhalter, J., and Langer, R., 1992, Isolation and characterization of an inhibitor of neovascularization from scapular chondrocytes, J. Cell Biol. 119: 475–482.CrossRefPubMedGoogle Scholar
  65. Murphy, G., and Docherty, A. J. P., 1992, The matrix metalloproteinases and their inhibitors, Am. J. Resp. Cell Mol. Biol. 7:120–125.CrossRefGoogle Scholar
  66. Nachman, R.L., 1992, Thrombosis and atherogenesis: molecular connections, Blood 79:1897–1906.PubMedGoogle Scholar
  67. Nagase, H. 1994. Matrix metalloproteases- a mini-review, in: Extracellular Matrix in the Kidney (H. Kiode, and T. Hayashi, eds), vol. 107, pp. 85–93, Contrib Nephrol. Karger, Basel.Google Scholar
  68. Nicosia, R.F., and Ottinetti, A., 1990, Modulation of microvascular growth and morphogenesis by reconstituted basement membrane gel in 3-dimensional cultures of rat aorta — A comparative study of angiogenesis in matrigel, collagen, fibrin, and plasma clot, In Vitro Cellular & Developmental Biol. 26:119–128.CrossRefGoogle Scholar
  69. Niedbala, M. J., and Stein-Picarella, M., 1992, Tumor necrosis factor induction of endothelial cell urokinase-type plasminogen activator mediated proteolysis of extracellular matrix and its antagonism by -interferon, Blood 79: 678–687.PubMedGoogle Scholar
  70. Nikkari S.T., O’Brien, K.D., Ferguson, M., Hatsukami, T., Welgus, H.G., Alpers, C.E., and Clowes, A.W., 1995, Interstitial collagenase (MMP-1) expression in human carotid atherosclerosi s, Circulation 92:1393–1398.CrossRefPubMedGoogle Scholar
  71. Nykjær, A., Petersen, C. M., Møller, B., Jensen, P. H., Moestrup, S. K., Holtet, T. L., Etzerodt, M., Thogersen, H. C., Munch, M., Andreasen, P. A., and Gliemann, J., 1992, Purified 2-macroglobulin receptor/LDL receptor-related protein binds urokinase activator inhibitor type-1 complex — Evidence that the 2-macroglobulin receptor mediates cellular degradation of urokinase receptor-bound complexes, J. Biol. Chem. 267:14543–14546.PubMedGoogle Scholar
  72. Olson, D., Pöllänen, I., Høyer-Hansen, G., Rønne, E., Sakaguchi, K., Wun, T-C., Appella, E., Danø, K. and Blasi, F., 1992, Internalization of the urokinase-plasminogen activator inhibitor type-1 complex is mediated by the urokinase receptor, J. Biol. Chem. 267:9129–9133.PubMedGoogle Scholar
  73. Passaniti, A., Taylor, R. M., Pili, R., Guo, Y., Long, P. V., Haney, J. A., Pauly, R. R., Grant, D. S., and Martin, G. R., 1992, A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor, Lab. Invest. 67:519–528.PubMedGoogle Scholar
  74. Pendas, A., Knauper, V., Puente, X., Llano, E., Mattei, M., Apte, S., Murphy, G., and Lopezotin, C., 1997, Identification and characterization of a novel human matrix metalloproteinase with unique structural characteristics, chromosomal location, and tissue distribution, J. Biol. Chem. 272: 4281–4286.CrossRefPubMedGoogle Scholar
  75. Pepper, M. S., Vassalli, J-D., Montesano, R., and Orci, L., 1987, Urokinase-type plasminogen activator is induced in migrating capillary endothelial cells, J. Cell Biol. 105:2535–2541.CrossRefPubMedGoogle Scholar
  76. Pepper, M. S., Belin, D., Montesano, R., Orci, L., and Vassalli, J., 1990, Transforming growth factor-ß-1 modulates basic fibroblast growth factor induced proteolytic and angiogenic properties of endothelial cells in vitro, J. Cell Biol. 111:743–755.CrossRefPubMedGoogle Scholar
  77. Pepper, M. S., Ferrara, N., Orci, L., and Montesano, R., 1991, Vascular endothelial growth factor (VEGF) induces plasminogen activators and plasminogen activator inhibitor-1 in microvascular endothelial cells, Biochem. Biophys. Res. Commun. 181:902–906.CrossRefPubMedGoogle Scholar
  78. Pepper, M. S., Ferrara, N., Orci, L., and Montesano, R., 1992, Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro, Biochem. Biophys. Res. Commun. 189:824–831.CrossRefPubMedGoogle Scholar
  79. Pepper, M. S., Sappino, A-P., Stocklin, R., Montesano, R., Orci, L., and Vassalli, J-D., 1993, Upregulation of urokinase receptor expression on migrating endothelial cells, J. Cell Biol. 122:673–684.CrossRefPubMedGoogle Scholar
  80. Plate, K. H., G. Breier, H. A. Weich, and Risau, W., 1992, Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo, Nature 359:845–848.CrossRefPubMedGoogle Scholar
  81. Ploug, M., Behrendt, N., Lober, D., and Danø, K., 1991, Protein structure and membrane anchorage of the cellular receptor for urokinase-type plasminogen activator, Seminars in Thromb. Haemostas. 17:183–193.CrossRefGoogle Scholar
  82. Plow, E.F., Felez, J. and Miles, L.A., 1991, Cellular regulation of fibrinolysis, Thromb. Haemostas. 66:32–36.Google Scholar
  83. Pöllänen, J., Hedman, K., Nielsen, L. S., Danø, K., and Vaheri, A., 1988, Ultrastructural localization of plasma membrane-associated urokinase-type plasminogen activator at focal contacts, J. Cell Biol. 106: 87–95.CrossRefPubMedGoogle Scholar
  84. Polverini, P., 1989, Macrophage-induced angiogenesis — A review, Macrophage-Derived Cell Regulatory Factors, 1:54–73.Google Scholar
  85. Presta, M., Maier, J. A. M., and Ragnotti, G., 1989, The mitogenic signalling pathway but not the plasminogen activator-inducing pathway of basic fibroblast growth factor is mediated through protein kinase C in fetal bovine aortic endothelial cells, J. Cell Biol. 109:1877–1884.CrossRefPubMedGoogle Scholar
  86. Puente, X.S., Pendas, A.M., Llano, E., Velasco, G., Lopezotin, C., 1996, Molecular cloning of a novel membrane-type matrix metalloproteinase from a human breast carcinoma, Cancer Res. 56:44–949Google Scholar
  87. Quigley, J. P., Gold, L. I., Schwimmer, R., and Sullivan, L. M., 1987, Limited cleavage of cellular fibronectin by plasmin activator purified from transformed cells, Proc. Natl. Acad. Sci. USA 84: 2776–2780.CrossRefPubMedGoogle Scholar
  88. Rao, N. K., Shi, G-P., and Chapman, H. A., 1995, Urokinase receptor is a multifunctional protein: Influence of receptor occupancy on macrophage gene expression, J. Clin. Invest. 96:465–474.CrossRefPubMedGoogle Scholar
  89. Rao, J.S., Yamamoto, M., Mohaman, S., Gokaslan, Z.L., Stetler-Stevenson, W.G., Roa, V.H., Liotta, L.A., Nicolson, G.I., and Sawaya, R.E., 1996, Expression and localization of 92 kD type IV collagenase genatinase B (MMP-9) in human gliomas, Clin. Exp. Metastasis 14:12–18.CrossRefPubMedGoogle Scholar
  90. Redlitz, A., Tan, A. K., Eaton, D. L., and Plow, E. F., 1995, Plasma carboxypeptidases as regulators of plasminogen system, J. Clin. Invest. 96: 2534–2538.CrossRefPubMedGoogle Scholar
  91. Saksela, O.D., Moscatelli, D. and Rifkin, D., 1987, The opposing effects of basic fibroblast growth factor and transforming growth factor beta on the regulation of plasminogen activator activity in capillary endothelial cells, J. Cell. Biol. 105:957–963.CrossRefPubMedGoogle Scholar
  92. Sato, H., Takin, T., Okada, Y., Cao, J., Shinagawa, A., Yamamoto, E., and Seiki, M., 1994, A matrix metalloproteinase expressed in the surface of invasive tumour cells, Nature 370:61–65.CrossRefPubMedGoogle Scholar
  93. Sato, H., and Seiki, M., 1996, Membrane-type matrix metalloproteinases (MT-MMPs) in tumor metastasis, J. Biochem. 119:209–215.CrossRefPubMedGoogle Scholar
  94. Schleef, R. R., Bevilacqua, M. J., Sawdey, M., Gimbrone, M. A., and Loskutoff, D. J., 1988, Cytokine activation of vascular endothelium. Effect on tissue-type plasminogen activator and type 1 plasminogen activator inhibitor, J. Biol. Chem. 263:5797–5803.PubMedGoogle Scholar
  95. Senger, D. R., L. Vandewater, L. F. Brown, J. A. Nagy, K. T. Yeo, T. K. Yeo, B. Berse, R. W. Jackman, A. M. Dvorak, and Dvorak, H. F., 1993, Vascular permeability factor (VPF, VEGF) in tumor biology, Cancer and Metastasis Rev. 12:303–324.CrossRefGoogle Scholar
  96. Shweiki, D., A. Itin, D. Soffer, and Keshet, E., 1992, Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis, Nature 359:843–845.CrossRefPubMedGoogle Scholar
  97. Sprengers, E.D. and Kluft, C., 1987, Plasminogen activator inhibitors, Blood 69:381–387.PubMedGoogle Scholar
  98. Takino, T., Sato, H., Shinagawa, A., and Seiki, M., 1995, Identification of the second membrane-type matrix metalloproteinase (MT-MMP- 2) gene from a human placenta cDNA library — MT-MMPs form a unique membrane- type subclass in the MMP family, J. Biol. Chem. 270:23013–23020.CrossRefPubMedGoogle Scholar
  99. Tsuboi, R., Sato, Y., and Rifkin, D. B., 1990, Correlation of cell migration, cell invasion, receptor number, proteinase production, and basic fibroblast growth factor levels in endothelial cells, J. Cell Biol. 110: 511–517.CrossRefPubMedGoogle Scholar
  100. Unemori, E. N., Bouhana, K. S., and Werb, Z., 1990, Vectorial Secretion of Extracellular Matrix Proteins, Matrix- Degrading Proteinases, and Tissue Inhibitor of Metalloproteinases by Endothelial Cells, J. Biol. Chem. 265:445–451.PubMedGoogle Scholar
  101. Unemori, E. N., Ferrara, N., Bauer, E. A., and Amento, E. P., 1992, Vascular endothelial growth factor induces interstitial collagenase expression in human endothelial cells, J. Cell. Physiol. 153:557–562.CrossRefPubMedGoogle Scholar
  102. Van Hinsbergh, V.W.M., Kooistra, T., Van den Berg, E.A., Princen, H.M.G., Fiers, W. and Emeis, J.J., 1988, Tumor necrosis factor increases the production of plasminogen activator inhibitor in human endothelial cells in vitro and in rats in vivo, Blood 72:1467–1473.PubMedGoogle Scholar
  103. Van Hinsbergh, V. W. M., van den Berg, E. A., Fiers, W., and Dooijewaard, G., 1990, Tumor necrosis factor induces the production of urokinase-type plasminogen activator by human endothelial cells, Blood 75:1991–1998.PubMedGoogle Scholar
  104. Van Hinsbergh, V. W. M., 1992, Impact of endothelial activation on fibrinolysis and local proteolysis in tissue repair, Ann. N. Y. Acad. Sci. 667:151–162.CrossRefPubMedGoogle Scholar
  105. Van Hinsbergh, V.W.M., Vermeer, M., Koolwijk, P., Grimbergen, J., and Kooistra, T., 1994, Genistein reduces tumor necrosis factor -induced plasminogen activator inhibitor-1 transcription but not urokinase expression in human endothelial cells, Blood 84:2984–2991.PubMedGoogle Scholar
  106. Vassalli, J-D., 1994, The urokinase receptor, Fibrinolysis 8:172–181.Google Scholar
  107. Volpert, O., Ward, W., Lingen, M., Chesler, L., Solt, D., Johnson, M., Molteni, A., Polverini, P., and Bouck, N., 1996, Captopril inhibits angiogenesis and slows the growth of experimental tumors in rats, J. Clin. Invest. 98:671–679.CrossRefPubMedGoogle Scholar
  108. Wallén, P., 1987, Structure and Function of Tissue Plasminogen Activator and Urokinase, in: Fundamental and Clinical Fibrinolysis (P.J. Castellino, P.J. Gaffney, M.M. Samama, and A. Takada, eds.), pp. 1–18, Elsevier, Amsterdam.Google Scholar
  109. Wei, Y., Waltz, D., Rao, N., Drummond, R., Rosenberg, S., and Chapman, H., 1994, Identification of the urokinase receptor as cell adhesion receptor for vitronectin, J. Biol. Chem. 269:32380–32388.PubMedGoogle Scholar
  110. Weinberg, J.B., Pippen, A.M.M and Greenberg, C.S., 1991, Extravascular fibrin formation and dissolution in synovial tissue of patients with osteoarthitis and rheumatoid arthritis, Arthitis Rheum. 34:996–1005.CrossRefGoogle Scholar
  111. Will, H., and Hinzmann, B., 1995 cDNA sequence and mRNA tissue distribution of a novel human matrix metalloproteinase with a potential transmembrane segment, Eur. J. Biochem. 231:602–608.CrossRefPubMedGoogle Scholar
  112. Will, H., Atkinson, S., Butler, G., Smith, B., and Murphy, G., 1996, The soluble catalytic domain of membrane type 1 matrix metalloproteinase cleaves the propeptide of progelatinase a and initiates autoproteolytic activation — regulation by TIMP- 2 and TMP-3, J. Biol. Chem. 271:17119–17123.CrossRefPubMedGoogle Scholar
  113. Woessner, J. F., 1991, Matrix metalloproteinases and their inhibitors in connective tissue remodelling, FASEB J. 5:2145–2154.PubMedGoogle Scholar
  114. Wyne, K.L., Pathak, R.K., Seabra, M.C., and Hobbs, H.H., 1996, Expression of the VLDL receptor in endothelial cells, Arterioscl. Thromb. Vasc. Biol. 16:407–415.CrossRefPubMedGoogle Scholar
  115. Zucker, S., Conner, C., Dimassmo, B., Ende, H., Drews, M., Seiki, M., and Bahou, W., 1995, Thrombin induces the activation of progelatinase a in vascular endothelial cells — physiologic regulation of angiogenesis, J. Biol. Chem. 270:23730–23738.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Pieter Koolwijk
    • 1
  • Roeland Hanemaaijer
    • 1
  • Victor W. M. van Hinsbergh
    • 1
  1. 1.Gaubius Laboratory TNO-PGLeidenThe Netherlands

Personalised recommendations