Advertisement

Photonic Switching Architectures Based on Logic Devices (Free-Space Digital Optics)

  • H. Scott Hinton
  • J. R. Erickson
  • T. J. Cloonan
  • F. A. P. Tooley
  • F. B. McCormick
  • A. L. Lentine
Part of the Applications of Communications Theory book series (ACTH)

Abstract

Photonic switching architectures that are based on logic devices have been under study since the early 1980s. Logic-based systems can be subdivided into two broad categories: (1) guided wave systems based on logic devices and (2) free-space systems based on logic devices.

Keywords

Output Port Logic Gate Spatial Light Modulator Switching Element Switching Fabric 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. N. Islam, C. E. Soccolich, S. T. Ho, R. E. Slusher, and J. R. Sauer, Ultrafast all-optical fiber soliton logic gates, in: OSA Proc. on Photonic Switching (H. S. Hinton and J. W. Goodman, eds.) Vol. 8, pp. 98–194, Optical Society of America, Washington, D.C. (1991).Google Scholar
  2. 2.
    J. W. Goodman, Optics and an interconnect technology, in: Optical Processing and Computing (H. H. Arsenault, T. Szoplik, and B. Macukow, eds.), Academic Press, New York (1989).Google Scholar
  3. 3.
    M. R. Feldman, S. C. Esener, C. C. Guest, and S. H. Lee, Comparison between optical and electrical interconnects based on power and speed considerations, Appl. Opt. 27, 1742 (1988).CrossRefGoogle Scholar
  4. 4.
    K. Hwang and F. A. Briggs, Computer Architecture and Parallel Processing, McGraw-Hill, New York (1984).MATHGoogle Scholar
  5. 5.
    R. W. Hockney and C. R. Jesshope, Parallel Computers, Hilger, Bristol (1981).MATHGoogle Scholar
  6. 6.
    T. Feng, A survey of interconnection networks, IEEE Comput. 14, 12–27 (1981).CrossRefGoogle Scholar
  7. 7.
    H. J. Siegel, Interconnection Networks for Large-Scale Parallel Processing, Lexington Books, Lexington, Mass. (1985).Google Scholar
  8. 8.
    W. P. Lidinsky, Network requirements for data traffic, in: Perspectives on Packetized Voice and Data Communications (IEEE Press, New York, 1991) pp. 5–10.Google Scholar
  9. 9.
    S. Weinstein, IEEE Spectrum November, 1987.Google Scholar
  10. 10.
    C.-L. Wu and T.-Y. Feng, Tutorial: Interconnection Networks for Parallel and Distributed Processing, IEEE Computer Society Press (1984).Google Scholar
  11. 11.
    G. M. Masson, G. C. Gingher, and S. Nakamura, A sampler of circuit switching networks, in: Computer, pp. 32–48, IEEE Press (1979).Google Scholar
  12. 12.
    H. S. Stone, Parallel processing with the perfect shuffle, IEEE Trans. Comput. C-20, 153 (1977).CrossRefGoogle Scholar
  13. 13.
    J. H. Patel, Performance of processor-memory interconnections for multiprocessors, IEEE Trans. Comput. C-30, 771 (1981).CrossRefGoogle Scholar
  14. 14.
    C.-L. Wu and T.-Y. Feng, On a class of multistage interconnection networks, IEEE Trans. Comput. C-29, 694 (1980).MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    T. J. Cloonan, Topological equivalence of crossover networks and data manipulator networks, Appl. Opt. 28, 2494 (1989).CrossRefGoogle Scholar
  16. 16.
    D. S. Wise, Compact layouts of banyan/FFT networks, in: VLSI Systems and Computation (H. T. Kung, B. Sproull, and G. Steele, eds.), Computer Science Press, Rockville, Md. (1981).Google Scholar
  17. 17.
    J. Jahns and M. J. Murdocca, Crossover networks and their optical implementation, App. Opt. 27, 3155 (1988).CrossRefGoogle Scholar
  18. 18.
    T.-Y. Feng, Data manipulating functions in parallel processors and their implementations, IEEE Trans. Comput. C-23, 309 (1974).MATHCrossRefGoogle Scholar
  19. 19.
    M. Decina, STM and ATM Switching Networks, course notes at Politecnico di Milano/ CEFRIEL, Milan, Italy.Google Scholar
  20. 20.
    C. Clos, A study of non-blocking switching networks. BSTJ March, 406 (1953).Google Scholar
  21. 21.
    V. E. Benes, On rearrangeable three-stage connecting networks, BSTJ September, 1481 (1962).Google Scholar
  22. 22.
    C.-L. Wu and T.-Y. Feng. The universality of the shuffle-exchange network, IEEE Trans. Comput. C-26, 458 (1977).CrossRefGoogle Scholar
  23. 23.
    D. K. Lawrie, Access and alignment of data in an array processor, IEEE Trans. Comput. C-24, 1145 (1975).MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    L. L. Goke and A. Lipovski, Banyan networks for partitioning multiprocessing systems, Proc. First Annual Comput. Architecture Conf, IEEE, Piscataway, N.J. (1973).Google Scholar
  25. 25.
    K. E. Batcher, The flip network in STARAN, Proc. 1976 Int. Conf. Parallel Processing, IEEE, Piscataway, N.J. (1976).Google Scholar
  26. 26.
    H. J. Siegel, Analysis techniques for SIMD machine interconnection networks and the effects of processor address masks, IEEE Trans. Comput. C-26, 153 (1977).MATHCrossRefGoogle Scholar
  27. 27.
    M. C. Pease, III, The indirect binary n-cube microprocessor array, IEEE Trans. Comput. C-26, 458 (1977).MATHCrossRefGoogle Scholar
  28. 28.
    R. J. McMillen and H. J. Siegel, Routing schemes for the augmented data manipulator network in an MIMD system, IEEE Trans. Comput. C-31, 1202 (1982).MATHCrossRefGoogle Scholar
  29. 29.
    G. B. Adams, III, and H. J. Siegel, The extra stage cube: A fault-tolerant interconnection network for supersystems, IEEE Trans. Comput. C-31, 443 (1982).MATHCrossRefGoogle Scholar
  30. 30.
    A. Huang and S. Knauer, Starlite: A wideband digital switch, Globe Com ‘84 (IEEE 84CH2064–4), Vol. 1, p. 121 (1984).Google Scholar
  31. 31.
    H. S. Hinton, Architectural considerations for photonic switching networks, IEEE J. Sel. Areas Commun. SAC-6, 1209 (1988).CrossRefGoogle Scholar
  32. 32.
    G. W. Richards, to be published.Google Scholar
  33. 33.
    T. J. Cloonan, M. J. Herron, F. A. P. Tooley, F. B. McCormick, E. Kerbis, J. L. Brubaker, A. L. Lentine, and G. W. Richards, An all-optical implementation of a 3D crossover network, IEEE Photon. Tech. Lett. 2, 438–440 (1990).CrossRefGoogle Scholar
  34. 34.
    T. J. Cloonan and F. B. McCormick, Photonic switching applications of 2-D and 3-D crossover networks based on 2-input, 2-output switching nodes, Appl. Opt. 30, 2309–2323 (1991).CrossRefGoogle Scholar
  35. 35.
    E. Kerbis, T. J. Cloonan, and F. B. McCormick, An all-optical realization of a 2 × 1 free-space switching node, IEEE Photon. Tech. Lett. 2, 600–602 (1990).CrossRefGoogle Scholar
  36. 36.
    H. Dammann and K. Gortler, High efficiency in-line multiple imaging by means of multiple phase holograms, Opt. Commun. 3, 312–315 (1971).CrossRefGoogle Scholar
  37. 37.
    U. Killat, G. Rabe, and W. Rave, Binary phase gratings for star couplers with high splitting ratio, Fiber Integrated Opt. 4, 159–167 (1982).CrossRefGoogle Scholar
  38. 38.
    R. L. Morrison and S. L. Walker, Progress in diffractive phase gratings for spot array generation, in: Optical Computing, 1991, Technical Digest Series, Vol. 6, pp. 144–147, Optical Society of America, Washington, D.C.Google Scholar
  39. 39.
    A. Huang, Parallel algorithms for optical digital computers, Proc. Tenth International Optical Computing Conference, IEEE Computer Society, Los Angeles (1983).Google Scholar
  40. 40.
    K.-H. Brenner, A. Huang, and N. Streibl, Digital optical computing with symbolic substitution, Appl. Opt. 25, 3054 (1986).CrossRefGoogle Scholar
  41. 41.
    M. J. Murdocca, Digital optical computing with one-rule cellular automata, Appl. Opt. 26, 682 (1987).CrossRefGoogle Scholar
  42. 42.
    T. J. Cloonan, Performance analysis of optical symbolic substitution, Appl. Opt. 27, 1701 (1988).CrossRefGoogle Scholar
  43. 43.
    A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, and L. M. F. Chirovsky, The symmetric self electro-optic effect device, Postdeadline Papers, Conference on Lasers and Electro-Optics, Optical Society of America, Washington, D.C. (1987).Google Scholar
  44. 44.
    D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, Jr., A. C. Gossard, and W. Wiegmann, Quantum well self-electrooptic effect device: Optoelectronic bistability and oscillation, and self-linearized modulation, IEEE J. Quantum Electron. QE-21, 1462 (1985).CrossRefGoogle Scholar
  45. 45.
    T. J. Cloonan, Strengths and weaknesses of optical architectures based on symbolic substitution, in: Topical Meeting on Optical Computing, Technical Digest Series 1987, Vol. 11, pp. 16–19, Optical Society of America, Washington, D.C. (1987).Google Scholar
  46. 46.
    K.-H. Brenner and G. Stucke, Programmable optical processor based on symbolic substitution, in: Topical Meeting on Optical Computing, Technical Digest Series 1987, Vol. 11, pp. 6–8, Optical Society of America, Washington, D.C. (1987).Google Scholar
  47. 47.
    J. N. Mait and K.-H. Brenner, Optical systems for symbolic substitution, in: Topical Meeting on Optical Computing, Technical Digest Series 1987, Vol. 11, pp. 12–15, Optical Society of America, Washington, D.C. (1987).Google Scholar
  48. 48.
    M. J. Murdocca, Theory and applications of free-space digital optical computing, Ph.D. dissertation, Rutgers University, New Brunswick, N.J. (1989).Google Scholar
  49. 49.
    M. J. Murdocca, A. Huang, J. Jahns, and N. Streibl, Optical design of programmable logic arrays, Appl. Opt. 27, 1651 (1988).CrossRefGoogle Scholar
  50. 50.
    M. J. Murdocca and T. J. Cloonan, Optical design of a digital switch, Appl. Opt. 28, 2505 (1989).CrossRefGoogle Scholar
  51. 51.
    H. S. Stone, Parallel processing with the perfect shuffle, IEEE Trans. Comput. C-20, 153–161 (1971).MATHCrossRefGoogle Scholar
  52. 52.
    D. L. Lawrie, Access and alignment of data in an array processor, IEEE Trans. Comput. C-24, 1145–1155 (1975).MathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    J. H. Patel, Performance of processor-memory interconnections for multiprocessors, IEEE Trans. Comput. C-30, 771–780 (1981).CrossRefGoogle Scholar
  54. 54.
    A. W. Lohmann, What classical optics can do for the digital optical computer, Appl. Opt. 25, 1543–1549(1985).CrossRefGoogle Scholar
  55. 55.
    T. Kumagai and K. Ikegaya, The two-dimensional inverse omega network, 1985 Int. Conf. Parallel Processing (D. Degroot, ed.), pp. 325–327 (1985).Google Scholar
  56. 56.
    S.-H. Lin, T. F. Krile, and J. F. Walkup, 2-D optical multistage interconnection networks, Digital Optical Computing (R. Arrathoon, ed.), SPIE 752, pp. 209–216 (1987).CrossRefGoogle Scholar
  57. 57.
    S.-H. Lin, T. F. Krile, and J. F. Walkup, Two-dimensional Clos optical interconnection network, in: Topical Meeting on Optical Computing, Technical Digest Series 1987, Vol. 11, pp. 98–101, Optical Society of America, Washington, D.C. (1987).Google Scholar
  58. 58.
    C. W. Stirk, R. A. Athale, and M. W. Haney, Folded perfect shuffle optical processor, App. Opt. 27, 202 (1988).CrossRefGoogle Scholar
  59. 59.
    G. Stucke, A complete 2D-shuffle/exchange stage for large ID data arrays, Optik 78, 84–85 (1988).Google Scholar
  60. 60.
    B. K. Jenkins, P. Chavel, R. Forchheimer, A. A. Sawchuck, and T. C. Strand, Architectural implications of a digital optical processor, Appl. Opt. 23, 3465–3473 (1984).CrossRefGoogle Scholar
  61. 61.
    J. Giglmayr, Classification scheme for 3-D shuffle interconnection patterns, Appl. Opt. 28, 3120–3128 (1989).CrossRefGoogle Scholar
  62. 62.
    F. B. McCormick, T. J. Cloonan, and H. S. Hinton, Optical Switch, U.S. Patent 4,830,444.Google Scholar
  63. 63.
    A. L. Lentine, S. J. Hinterlong, T. J. Cloonan, F. B. McCormick, D. A. B. Miller, L. M. F. Chirovsky, L. A. D’Asaro, R. F. Kopf, and J. M. Kuo, Quantum well optical tri-state devices, Appl. Opt. 29, 1157–1160 (1990).CrossRefGoogle Scholar
  64. 64.
    T.-Y. Feng, A survey of interconnection networks, Computer, December, 12–27 (1981).Google Scholar
  65. 65.
    H. S. Hinton, A nonblocking optical interconnection network using directional couplers, Proc. IEEE Globecom, Nov. 1984, pp. 885–890.Google Scholar
  66. 66.
    H. S. Hinton, Photonic switching using directional couplers, IEEE Trans. Commun. 25, 16(1987).MathSciNetGoogle Scholar
  67. 67.
    T. Shimoe, K. Hajikano, and K. Murakami, Path-independent insertion loss optical space switch, Proc. OFC/IOOC ‘87. Google Scholar
  68. 68.
    A. R. Dias, R. F. Kaiman, J. W. Goodman, and A. A. Sawchuck, Fiber-optic crossbar switch with broadcast capability, Opt. Eng. 27, 000 (1988).CrossRefGoogle Scholar
  69. 69.
    J. W. Goodman, A. R. Dias, and L. M. Woody, Fully parallel, high-speed incoherent optical method for performing discrete Fourier transforms, Opt. Lett. 2, 1 (1978).CrossRefGoogle Scholar
  70. 70.
    A. A. Sawchuck, B. K. Jenkins, C. S. Raghavendra, and A. Varma, Optical crossbar networks, IEEE Trans. Comput. 20, 50 (1987).Google Scholar
  71. 71.
    A. Dickinson and M. E. Prise, A free-space optical interconnection scheme, in: Optical Computing, Technical Digest Series, Vol. 9, pp. 132–135, Optical Society of America, Washington, D.C. (1989).Google Scholar
  72. 72.
    T. J. Cloonan and A. L. Lentine, Self-routing crossbar packet switch employing free-space optics for chip-to-chip interconnections, Appl. Opt. 30, 3721–3733 (1991).CrossRefGoogle Scholar
  73. 73.
    T. J. Cloonan, A free-space optical implementation of a feed-forward crossbar network, Appl. Opt. 29, 2006 (1990).CrossRefGoogle Scholar
  74. 74.
    J. Jahns and M. J. Murdocca, Crossover networks and their optical implementation, Appl. Opt. 27, 3155 (1988).CrossRefGoogle Scholar
  75. 75.
    M. E. Prise, M. M. Downs, F. B. McCormick, S. J. Walker, and N. Streibl, Design of an optical digital computer, in: Optical Bistability IV (W. Firth, N. Peyghambarian, and A. Tallet, eds.), Les Editions De Physique, Les Ulis Cedex, France (1988).Google Scholar
  76. 76.
    M. J. Murdocca, A. Huang, J. Jahns, and N. Streibl, Optical design of programmable logic arrays, Appl. Opt. 27, 1651 (1988).CrossRefGoogle Scholar
  77. 77.
    J. E. Midwinter, A novel approach to the design of optically activated wideband switching matrices, IEEE Proc. J. 134, 261 (1987).Google Scholar
  78. 78.
    A. A. Sawchuck and I. Glaser, Geometries for optical implementations of the perfect shuffle, Optical Computing 88, SPIE Vol. 963, pp. 270–282 (1988).CrossRefGoogle Scholar
  79. 79.
    A. W. Lohmann, W. Stork, and G. Stucke, Optical perfect shuffle, Appl. Opt. 25, 1530 (1986).CrossRefGoogle Scholar
  80. 80.
    A. W. Lohmann, What classical optics can do for the digital optical computer, Appl. Opt. 25, 1543 (1986).CrossRefGoogle Scholar
  81. 81.
    G. Eichmann and Y. Li, Compact optical generalized perfect shuffle, Appl. Opt. 26, 1167 (1987).CrossRefGoogle Scholar
  82. 82.
    K.-H. Brenner and A. Huang, Optical implementations of the perfect shuffle interconnection, Appl. Opt. 27, 135 (1988).CrossRefGoogle Scholar
  83. 83.
    Q. W. Song and F. T. S. Yu, Generalized perfect shuffle using optical spatial filtering, Appl. Opt. 27, 1222 (1988).CrossRefGoogle Scholar
  84. 84.
    T. Kumagai and K. Ikegaya, The two-dimensional inverse omega network, Proc. 1985 Int. Conf. Parallel Processing, pp. 325–327, IEEE Computer Society Press (1985).Google Scholar
  85. 85.
    S.-H. Lin, T. F. Krile, and J. F. Walkup, 2-D optical multistage interconnection networks, Digital Optical Computing, SPIE Vol. 752, p. 209 (1987).CrossRefGoogle Scholar
  86. 86.
    M. G. Taylor and J. E. Midwinter, Two-dimensional perfect shuffle networks, in: OSA Proceedings on Photonic Switching (J. E. Midwinter and H. S. Hinton, eds.), Vol. 3, pp. 180–183, Optical Society of America, Washington, D.C. (1989).Google Scholar
  87. 87.
    Y. J. Sheng, Light effective 2-D optical perfect shuffle using Fresnel mirrors, Appl. Opt. 28, 3290 (1989).CrossRefGoogle Scholar
  88. 88.
    C. W. Stirk, R. A. Athale, and M. W. Haney, Folded perfect shuffle optical processor, Appl. Opt. 27, 202 (1988).CrossRefGoogle Scholar
  89. 89.
    D. S. Wise, Compact layouts of banyan/FFT networks, in: VLSI Systems and Computation (H. T. Kung, B. Sproull, and G. Steele, eds.), Computer Science Press, Rockville, Md. (1981).Google Scholar
  90. 90.
    T. J. Cloonan, Topological equivalence of crossover networks and data manipulator networks, Appl. Opt. 28, 2494 (1989).CrossRefGoogle Scholar
  91. 91.
    H. S. Stone, Parallel processing with the perfect shuffle, IEEE Trans. Comput. C-20, 153 (1971).MATHCrossRefGoogle Scholar
  92. 92.
    D. L. Lawrie, Access and alignment of data in an array processor, IEEE Trans. Comput. C-24, 1145(1975).MathSciNetMATHCrossRefGoogle Scholar
  93. 93.
    M. E. Prise, M. M. Downs, F. B. McCormick, S. J. Walker, and N. Streibl, Design of an optical digital computer, J. Phys. (Paris) Colloq. C2 Suppl. 6, 49, 15–18 (1988).Google Scholar
  94. 94.
    F. B. McCormick and M. E. Prise, Optical circuitry for free-space interconnections, Appl. Opt. 29, 2013–2018 (1990).CrossRefGoogle Scholar
  95. 95.
    T. J. Cloonan and F. B. McCormick, Photonic switching applications of two-dimensional and three-dimensional crossover networks based on 2-input, 2-output switching nodes, Appl. Opt. 30, 2309–2323 (1991).CrossRefGoogle Scholar
  96. 96.
    T. J. Cloonan, M. J. Herron, F. A. P. Tooley, G. W. Richards, F. B. McCormick, E. Kerbis, J. L. Brubaker, and A. L. Lentine, An all-optical implementation of a 3D crossover switching network, IEEE Photon. Technol. Lett. 2, 438–440 (1990).CrossRefGoogle Scholar
  97. 97.
    A. L. Lentine, S. J. Hinterlong, T. J. Cloonan, F. B. McCormick, D. A. B. Miller, L. M. F. Chirovsky, L. A. D’Asaro, R. F. Kopf, and J. M. Kuo, Quantum well optical tri-state devices, Appl. Opt. 29, 1157 (1990).CrossRefGoogle Scholar
  98. 98.
    M. J. Murdocca, Theory and applications of free-space digital optical computing, Ph.D. dissertation, Rutgers University, New Brunswick, N.J. (1989).Google Scholar
  99. 99.
    M. J. Murdocca, A. Huang, J. Jahns, and N. Streibl, Optical design of programmable logic arrays, Appl. Opt. 27, 1651 (1988).CrossRefGoogle Scholar
  100. 100.
    E. Kerbis, T. J. Cloonan, and F. B. McCormick, An all-optical realization of a 2 x 1 free-space switching node, IEEE Photon. Tech. Lett. 2, 600–602 (1990).CrossRefGoogle Scholar
  101. 101.
    T. J. Cloonan and M. J. Herron, Optical implementation and performance of one-dimensional and two-dimensional trimmed inverse augmented data manipulator networks for multiprocessor computer systems, Opt. Eng. 28, 305–314 (1989).CrossRefGoogle Scholar
  102. 102.
    T.-Y. Feng, Data manipulating functions in parallel processors and their implementations, IEEE Trans. Comput. C-23, 309–318 (1974).CrossRefGoogle Scholar
  103. 103.
    Siegel, H. J.,Interconnection Networks for Large-Scale Parallel Processing, Lexington Books, Lexington, Mass. (1985).Google Scholar
  104. 104.
    H. Dammann and K. Gortler, High efficiency in-line multiple imaging by means of multiple phase holograms, Opt. Commun. 3, 312–315 (1971).CrossRefGoogle Scholar
  105. 105.
    U. Killat, G. Rabe, and W. Rave, Binary phase gratings for star couplers with high splitting ratio, Fiber Integrated Opt. 4, 159–167 (1982).CrossRefGoogle Scholar
  106. 106.
    R. L. Morrison and S. L. Walker, Progress in diffractive phase gratings for spot array generation, in: Optical Computing, 1991, Technical Digest Series, Vol. 6, pp. 144–147, Optical Society of America, Washington, D.C.Google Scholar
  107. 107.
    K. E. Batcher, Sorting networks and their applications, 1968 Spring Joint Computer Conference, AFIPS Proc. Vol. 32, pp. 307–314.Google Scholar
  108. 108.
    K. E. Batcher, The flip network in STARAN, Proc. 1976 Int. Conf. Parallel Processing, pp. 65–71 (1976).Google Scholar
  109. 109.
    A. Huang and S. Knauer, Starlite: A wideband digital switch, GlobeCom ’84 (IEEE 84CH2064–4), Vol. 1, p. 121 (1984).Google Scholar
  110. 110.
    M. J. Murdocca and T. J. Cloonan, Optical design of a digital switch, Appl. Opt. 28, 2505 (1989).CrossRefGoogle Scholar
  111. 111.
    D. Knuth, The Art of Computer Programming, Vol. 3, p. 237, Addison Wesley, Reading, Mass. (1973).Google Scholar
  112. 112.
    G. W. Richards and F. Hwang, to be published.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • H. Scott Hinton
    • 1
  • J. R. Erickson
  • T. J. Cloonan
  • F. A. P. Tooley
  • F. B. McCormick
  • A. L. Lentine
  1. 1.McGill UniversityMontrealCanada

Personalised recommendations