Skip to main content

Abstract

Free-space digital optics is a topic based on many disciplines: nonlinear optics, computer and switching network architectural design, semiconductor physics, mechanical design, and, of course, optical system design. Initial work in this area concentrated on the discovery and development of nonlinear optical effects with which to form optical switching devices or logic gates. Progress on the device front stimulated research on switching and computing architectures to capitalize on the potential advantages of free-space digital optics. However, without arrays of practical devices, realistic demonstrations of these architectures were not possible. With the development of batch-fabricated symmetric SEEDs, nonlinear interference filters, and liquid-crystal and magneto-optic spatial light modulators, more complex system experiments became possible.(1–5) The demonstration of these experiments required careful attention to the optical and opto-mechanical system design, in addition to significant device and architectural research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. B. McCormick, F. A. P. Tooley, J. M. Sasian, J. L. Brubaker, A. L. Lentine, T. J. Cloonan, R. L. Morrison, S. L. Walker, and R. J. Crisci, Parallel interconnection of two 64 x 32 symmetric self electro-optic effect device arrays, Electron. Lett. 27, 1869–1871 (1991).

    Article  Google Scholar 

  2. F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. L. Brubaker, A. L. Lentine, R. L. Morrison, S. J. Hinterlong, M. J. Herron, S. L. Walker, and J. M. Sasian, S-SEED based photonic switching network demonstration in: OSA Proceedings on Photonic Switching (H. S. Hinton and J. W. Goodman, eds.), Vol. 8, pp. 48–55, Optical Society of America, Washington, D.C. (1991).

    Google Scholar 

  3. T. J. Cloonan, M. J. Herron, F. A. P. Tooley, G. W. Richards, F. B. McCormick, E. Kerbis, J. L. Brubaker, and A. L. Lentine, An all-optical implementation of a 3D crossover switching network, IEEE Photon. Tech. Lett. 2, 438–440 (1990).

    Article  Google Scholar 

  4. M. E. Prise, N. C. Craft, R. E. LaMarche, M. M. Downs, S. J. Walker, L. A. D’Asaro, and L. M. F. Chirovsky, Module for optical logic circuits using symmetric self electrooptic effect devices, App. Opt. 29, 2164–2170 (1990).

    Article  Google Scholar 

  5. B. S. Wherrett, R. G. A. Craig, J. F. Snowdon, G. S. Buller, F. A. P. Tooley, S. Bowman, G. S. Pauley, I. R. Redmond, D. McKnight, M. R. Tagizadeh, A. C. Walker, and S. D. Smith, Construction and tolerancing of an optical CLIP, in: Digital Optical Computing II (Raymond Arrathoon, ed.), Proc. SPIE 1215, 1990, pp. 264–273.

    Chapter  Google Scholar 

  6. D. C. O’Shea, Elements of Modern Optical Design (Wiley, New York, 1985), pp. 230–231.

    Google Scholar 

  7. K. Iga, M. Oikawa, S. Misawa, J. Banno, and Y. Kokubun, Stacked planar optics: an application of the planar microlens, Appl. Opt. 21, 3456–3460 (1982).

    Article  Google Scholar 

  8. M. R. Feldman and C. C. Guest, Computer generated holographic optical elements for optical interconnection of very large scale integrated circuits, Appl. Opt. 26, 4377–4384, (1987).

    Article  Google Scholar 

  9. M. W. Haney and J. J. Levy, Optically cascadable folded perfect shuffle, in: OSA Annual Meeting, 1989, Technical Digest Series, Vol. 18, Optical Society of America, Washington DC.

    Google Scholar 

  10. K. Noguchi, K. Hogari, T. Sakano, and T. Matsumoto, A rearrangeable multichannel free-space optical switch using polarization-multiplexing technique, in: Photonic Switching II, Proceedings of the international topical meeting (K. Tada and H. S. Hinton, eds.) (Springer-Verlag, Berlin, 1990), pp. 208–211.

    Chapter  Google Scholar 

  11. K. Hogari, K. Noguchi, T. Sakano, and T. Matsumoto, Two-dimensional optical switch employing polarization control techniques, in: Photonic Switching II, Proceedings of the international topical meeting (K. Tada and H. S. Hinton, eds.) (Springer-Verlag, Berlin, 1990), pp. 204–207.

    Chapter  Google Scholar 

  12. S. Kawai, Free-space multi-stage optical interconnection networks using microlens arrays, in: Photonic Switching II, Proceedings of the international topical meeting (K. Tada and H. S. Hinton, eds.) (Springer-Verlag, Berlin, 1990), pp. 216–219.

    Chapter  Google Scholar 

  13. E. J. Restall, B. Robertson, M. R. Taghizadeh, and A. C. Walker, Two-dimensional spatially variant optical interconnects, in: Optical Computing 1991, Technical Digest Series, Vol. 6, pp. 49–52, Optical Society of America, Washington, D.C.

    Google Scholar 

  14. J. Schwider, W. Stork, N. Streibl, and R. Volkel, Possibilities and limitations of space-variant holographic optical elements for switching networks and general interconnects, Optics in Complex Systems, Proc. SPIE 1319, 1990, pp. 130–131.

    Google Scholar 

  15. F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, and H. S. Hinton, Microbeam interconnections using microlens arrays for free space photonic systems, in: OSA Proceedings on Photonic Switching (H. S. Hinton and J. W. Goodman, eds.), Vol. 8, pp. 90–96, Optical Society of America, Washington, D.C. (1991).

    Google Scholar 

  16. E. Hecht and A. Zajac, Optics (Addison-Wesley, Reading, Mass., 1974).

    Google Scholar 

  17. W. T. Welford, Aberrations of Optical Systems (Adam Hilger, Bristol, UK, 1986).

    Google Scholar 

  18. F. B. McCormick, F. A. P. Tooley, J. L. Brubaker, J.M. Sasian, T. J. Cloonan, A. L. Lentine, S. J. Hinterlong, and M. J. Herron, Optomechanics of a free-space switch: the system, in: Optomechanics and dimensional stability, Proc. SPIE 1533, 1991, pp. 97–114.

    Chapter  Google Scholar 

  19. W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966), pp. 82–84.

    Google Scholar 

  20. W. J. Smith, Image formation: geometrical and physical optics, in: Handbook of Optics (W. G. Driscoll and W. Vaughan, eds.) (McGraw-Hill, New York, 1978), pp. 2–19.

    Google Scholar 

  21. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, Oxford, UK, 1980), pp. 395–397.

    Google Scholar 

  22. S. J. Wein and W. L. Wolfe, Gaussian-apodized apertures and small-angle scatter measurement, Opt. Eng. 28, 2730–280 (1989).

    Article  Google Scholar 

  23. P. Belland and J. P. Crenn, Changes in the characteristics of a Gaussian beam weakly diffracted by a circular aperture, Appl. Opt. 21, 522–527 (1982).

    Article  Google Scholar 

  24. M. Griot, Laser Scan Lens Guide, copyright Melles Griot, 1987.

    Google Scholar 

  25. V. N. Majahan, Strehl Ratio for primary aberrations: some analytical results for circular and annular pupils, J. Opt. Soc. Am. 72, 1258–1266 (1982).

    Article  Google Scholar 

  26. J. M. Bennett and H. E. Bennett, Polarization, in: Handbook of Optics (W. G. Driscoll and W. Vaughan, eds.) (McGraw-Hill, New York, 1978).

    Google Scholar 

  27. D. S. Kliger, J. W. Lewis, and C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, San Diego, 1990).

    Google Scholar 

  28. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier Science, Amsterdam, 1977).

    Google Scholar 

  29. R. C. Enger and S. K. Case, Optical elements with ultrahigh spatial-frequency surface corrugations, Appl. Opt. 22, 3220–3228 (1983).

    Article  Google Scholar 

  30. K. M. Johnson, D. A. Jared, T. Slagle, K. Wagner, C. Mao, and M. G. Robinson, Ferroelectric Liquid Crystal Spatial Light Modulators and their Applications, in: Technical Digest on Spatial Light Modulators and Applications, 1990, Vol. 14, pp. 90–92, Optical Society of America, Washington, D.C.

    Google Scholar 

  31. W. E. Ross, D. Psaltis, and R. H. Anderson, Two-dimensional magneto-optic spatial light modulator for signal processing, Opt. Eng. 22, 485–490 (1983).

    Article  Google Scholar 

  32. P. Matthijesse, Multiple imaging with thin phase filters: a signal processing approach, J. Opt. Soc. Am. 68, 733–739 (1978).

    Article  Google Scholar 

  33. H. K. Liu and J. G. Duthie, Real-time screen-aided multiple-image optical holographic matched-filter correlator, Appl. Opt. 21, 3278–3286 (1982).

    Article  Google Scholar 

  34. B. Hill, Appl. Opt. 14, 2607 (1975).

    Article  Google Scholar 

  35. N. Streibl, Beam shaping with optical array generators, J. Mod. Opt. 36, 1559–1573 (1989)

    Article  Google Scholar 

  36. J. N. Mait, Review of multi-phase Fourier grating design for array generation, Computer and Optically formed Holographic Optics, Proc. SPIE 1211, 1990, pp. 67–68.

    Article  Google Scholar 

  37. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon Press, Oxford, UK, 1980), p. 482.

    Google Scholar 

  38. M. Born and E. Wolf, in Principles of Optics, Ref. 36, p. 187.

    Google Scholar 

  39. S. D. Smith, A. C. Walker, M. R. Taghizadeh, I. R. Redmond, and B. Robertson, The optical wiring of photonic digital processing arrays for optical computing, Optical Computing, Proc. SPIE 963, 1988, pp. 414–418.

    Google Scholar 

  40. A. W. Lohmann, J. Schwider, N. Streibl, and J. Thomas, Array illuminator based on phase contrast, Appl. Opt. 27, 2915–2921 (1988).

    Article  Google Scholar 

  41. M. Born and E. Wolf, in Principles of Optics, Ref. 36, p. 424.

    Google Scholar 

  42. T. Kubota and M. Takeda, Array illuminator using grating couplers, Opt. Lett. 14, 651–652 (1989).

    Article  Google Scholar 

  43. J. T. Winthrop and C. R. Worthington, Theory of Fresnel images, J. Opt. Soc. Am. 55, 373 (1965).

    Article  Google Scholar 

  44. A. W. Lohmann, An array illuminator based on the Talbot-effect, Optik 79, 41–45 (1988).

    Google Scholar 

  45. J. Jahns, M. M. Downs, M. E. Prise, N. Streibl, and S. J. Walker, Dammann gratings for laser beam shaping, Opt. Eng. 28, 1267–1275 (1989).

    Article  Google Scholar 

  46. H. Dammann and K. Gortler, High-efficiency in-line multiple imaging by means of multiple phase holograms, Opt. Commun. 3, 312–315 (1971).

    Article  Google Scholar 

  47. H. Dammann and E. Klotz, Coherent optical generation and inspection of two-dimensional periodic structures, Opt. Acta 24, 505–515 (1977).

    Article  Google Scholar 

  48. U. Killat, G. Rabe, and W. Rave, Binary phase gratings for star couplers with high splitting ratio, Fiber Int. Opt. 4, 159–167 (1982).

    Article  Google Scholar 

  49. M. R. Taghizadeh, J. Turunen, B. Robertson, A. Vasara, and J. Westerholm, Passive optical array generators, in: Optical Computing 1991, Technical Digest Series, Vol. 6, pp. 148–151, Optical Society of America, Washington, D.C.

    Google Scholar 

  50. F. B. McCormick, Generation of large spot arrays from single laser beam by multiple imaging with binary phase gratings, Opt. Eng. 28, 299–304 (1989).

    Article  Google Scholar 

  51. J. Jahns, N. Streibl, and S. J. Walker, Multilevel phase structures for array generation, Proc. SPIE 1052, 1989, pp. 198–203.

    Google Scholar 

  52. M. E. Prise, N. Streibl, and M. M. Downs, Optical considerations in the design of a digital computer, Opt. Quantum Electron. 20, 49–77 (1988).

    Article  Google Scholar 

  53. J. W. Goodman, Fan-in and fan-out with optical interconnections, Opt. Acta, 32, 1489–1496 (1985).

    Article  Google Scholar 

  54. M. von Laue, Ann. der Phys. 44, 1197 (1914).

    Google Scholar 

  55. D. Gabor, Prog. Opt. I, 155 (1961).

    Google Scholar 

  56. A. W. Lohmann, The space-bandwidth product, applied to spatial filtering and to holography (lecture notes, University of Michigan summer school on “Optical Data Processing”) (1966).

    Google Scholar 

  57. I. J. Cox and J. R. Sheppard, Information capacity and resolution in an optical system, J. Opt. Soc. Am. 3, 1152 (1986).

    Article  Google Scholar 

  58. W. Lukosz, Optical systems with resolving powers exceeding the classical limit, J. Opt. Soc. Am. 56, 1463(1966).

    Article  Google Scholar 

  59. M. A. Grimm and A. W. Lohmann, Superresolution for one-dimensional objects, J. Opt. Soc. Am. 56, 1151 (1966).

    Article  Google Scholar 

  60. M. E. Prise, N. Streibl, and M. M. Downs, Computational properties of nonlinear optical devices, Photonic Switching, Proceedings of the First Topical Meeting (T. K. Gustafson and P. W. Smith, eds.) (Springer-Verlag, 1987), pp. 200–203.

    Google Scholar 

  61. P. Wheatley and J. E. Midwinter, Operating curves for optical bistable devices, Photonic Switching, Proceedings of the First Topical Meeting (T. K. Gustafson and P. W. Smith, eds.) (Springer-Verlag, 1987), pp. 80–83.

    Google Scholar 

  62. A. L. Lentine, L. M. F. Chirovsky, L. A. D’Asaro, C. W. Tu and D. A. B. Miller, Energy scaling and subnanosecond switching of symmetric self electrooptic effect devices, IEEE Photon. Tech. Lett. 1, 129–131 (1989).

    Article  Google Scholar 

  63. J. L. Jewell, A. Scherer, S. L. McCall, A. C. Gossard, and J. H. English, GaAs-AlAs monolithic micro resonator arrays, Appl. Phys. Lett. 51, 94 (1987).

    Article  Google Scholar 

  64. P. S. Cross, G. L. Harnagel, W. Streifer, D. R. Scifres, and D. F. Welch, Ultrahigh-power semiconductor diodes laser arrays, Science 237, 1305 (1987).

    Article  Google Scholar 

  65. A. L. Lentine, F. B. McCormick, R. A. Novotny, L. M. F. Chirovsky, L. A. D’Asaro, R. F. Kopf, J. M. Kuo, and G. D. Boyd, A 2 kbit array of symmetric self electro-optic effect devices, IEEE Photon. Techn. Lett. 2, 51–53 (1990).

    Article  Google Scholar 

  66. J. L. Jewell, Y. H. Lee, A. Scherer, S. L. McCall, N. A. Olsson, R. S. Tucker, C. A. Burrus, J. P. Harbison, L. T. Florez, A. C. Gossard, and J. H. English, Nonlinear FP etalons and microlaser devices, in: Digital Optical Computing (R. A. Athale, ed.), SPIE Critical Review Series CR35, 44–67 (1990).

    Google Scholar 

  67. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, Novel hybrid optical bistable switch: the quantum well self electro-optic effect device, Appl. Phys. Lett. 45, 13–15 (1984).

    Article  Google Scholar 

  68. A. C. Walker, Reflection bistable etalon with absorbed transmission, Optics Communications 59, 145 (1986).

    Article  Google Scholar 

  69. A. C. Walker, Application of bistable optical logic gate arrays to all-optical digital parallel processing, Appl. Opt. 25, 1578–1585 (1986).

    Article  Google Scholar 

  70. M. E. Prise, M. M. Downs, F. B. McCormick, S. J. Walker, and N. Streibl, Design of an optical digital computer, J. Phys. 49, 15–18, March 1988.

    Google Scholar 

  71. F. B. McCormick, A. L. Lentine, L. M. F. Chirovsky, and L. A. D’Asaro, An all-optical shift register using symmetric self electro-optic effect devices, OSA Proceedings on Photonic Switching (J. E. Midwinter and H. S. Hinton, eds.), Vol. 3, pp. 192–195, Optical Society of America, Washington, D.C. (1989).

    Google Scholar 

  72. J. Turunen, A. Vasara, H. Ichikawa, E. Noponen, J. Westerholm, M. R. Tagizadeh, and J. M. Miller, Storage of multiple images in a thin synthetic Fourier hologram, Optics Communications 84, 383–392 (1991).

    Article  Google Scholar 

  73. J. E. Ford, S. H. Lee, and Y. Fainman, Application of photrefractive crystals to optical interconnection, Digital Optical Computing II (Raymond Arrathoon, ed.), Proc. SPIE 1215, 1990, pp. 155–165.

    Chapter  Google Scholar 

  74. D. Psaltis, D. Brady, and K. Wagner, Adaptive optical networks using photrefractive crystals, Appl. Opt. 27, 1752–1759 (1988).

    Article  Google Scholar 

  75. K-H. Brenner and A. Huang, Optical implementations of the perfect shuffle interconnection, Appl. Opt. 27, 135(1988).

    Article  Google Scholar 

  76. A. W. Lohmann, W. Stork, and G. Stucke, Optical perfect shuffle, Appl. Opt. 25, 1530 (1986).

    Article  Google Scholar 

  77. G. Eichmann and Y. Li, Compact optical generalized perfect shuffle, Appl. Opt. 26, 1167 (1987).

    Article  Google Scholar 

  78. C. W. Stirk, R. A. Athale, and M. W. Haney, Folded perfect shuffle optical processor, Appl. Opt. 27, 202 (1988).

    Article  Google Scholar 

  79. Y. Sheng, Light effective 2-D optical perfect shuffle using Fresnel mirrors, Appl. Opt. 28, 3290–3292 (1989).

    Article  Google Scholar 

  80. Y. Sheng, Corner-cube retroreflectors for optical chip-to-chip interconnections, Opt. Lett. 15, 755 757 (1990).

    Google Scholar 

  81. A. C. Walker, R. G. A. Craig, D. J. McKnight, I. R. Redmond, J. F. Snowdon, G. S. Buller, E. J. Restall, R. A. Wilson, S. Wakelin, N. McArdle, P. Meredith, J. M. Miller, G. MacKinnon, M. R. Taghizadeh, S. D. Smith, and B. S. Wherrett, Design and construction of a programmable optical 16 × 16 array processor, in Optical Computing 1991, Technical Digest Series, Vol. 6, pp. 199–202, Optical Society of America, Washington, D.C.

    Google Scholar 

  82. F. B. McCormick and M. E. Prise, Optical circuitry for free space interconnections, Appl. Opt. 29, 2013–2018 (1990).

    Article  Google Scholar 

  83. A. W. Lohmann, What classical optics can do for the digital optical computer, Appl. Opt. 25, 1543 (1986).

    Article  Google Scholar 

  84. K. M. Johnson, M. R. Surette, and J. Shamir, Optical interconnection network using polarization-based ferroelectric liquid crystal gates, Appl. Opt. 27, 1727–1733 (1988).

    Article  Google Scholar 

  85. J. Jahns, Optical implementation of the Banyan network, Opt. Commun. 76, 321–324 (1990).

    Article  Google Scholar 

  86. J. Jahns and M. J. Murdocca, Crossover networks and their optical implementation, Appl. Opt. 27, 3155–3160 (1988).

    Article  Google Scholar 

  87. F. A. P. Tooley, T. J. Cloonan, and F. B. McCormick, On the use of retroreflector array to implement crossover interconnections between arrays of SEED logic gates, Opt. Eng. 30, 1969–1975 (1991).

    Article  Google Scholar 

  88. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968).

    Google Scholar 

  89. C. D. McGillem and G. R. Cooper, Continuous and Discrete Signal and System Analysis (McGraw-Hill, New York, 1968), p. 365.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hinton, H.S., Erickson, J.R., Cloonan, T.J., Tooley, F.A.P., McCormick, F.B., Lentine, A.L. (1993). Free-Space Optical Hardware. In: An Introduction to Photonic Switching Fabrics. Applications of Communications Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9171-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9171-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9173-0

  • Online ISBN: 978-1-4757-9171-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics