Skip to main content

Part of the book series: Applications of Communications Theory ((ACTH))

  • 125 Accesses

Abstract

The purpose of this chapter is to introduce the photonic switching systems designers to some of the optically transparent or relational devices that can be used as building blocks in constructing larger photonic switching systems. By understanding the basic properties and attributes of these devices, the systems designer can determine the limitations that will constrain the systems he or she designs. Finally, it should be understood that the material in this chapter has been selected to teach the basic properties and attributes of several optically transparent devices from a systems perspective rather than from a device physics viewpoint. The design of these devices is beyond the scope of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Yariv, Introduction to Optical Electronics, 2nd ed., Holt, Rinehart & Winston, New York (1971).

    Google Scholar 

  2. L. Levi, Applied Optics: A Guide to Optical System Design, Vol. 2, Appendix 14.1.6, Wiley, New York (1980).

    Google Scholar 

  3. A. E. Joel, Jr., On permutation switching networks, Bell Syst. Tech. J. May-June, 813–822 (1968).

    Google Scholar 

  4. R. G. Hunsperger, Integrated Optics: Theory and Technology, Springer-Verlag, Berlin (1984).

    Google Scholar 

  5. R. V. Schmidt and R. C. Alferness, Directional coupler switches, modulators and filters using alternating Δβ techniques, IEEE Trans. Circuits Syst. CAS-26, 1099–1108 (1979).

    Article  Google Scholar 

  6. R. C. Alferness, R. V. Schmidt, and E. H. Turner, Characteristics of Ti-diffused lithium niobate optical directional couplers, Appl. Opt. 18, 4012–4016 (1979).

    Article  Google Scholar 

  7. M. Papuchon, Y. Combemale, X. Mathieu, D. B. Ostrowsky, L. Rieber, A. M. Roy, B. Sejourne, and M. Werner, Electrically switched optical directional coupler: Cobra, Appl. Phys. Lett. 17, 289–291 (1975).

    Article  Google Scholar 

  8. S. E. Miller, Coupled-wave theory and waveguide applications, Bell Syst. Tech. J. 33, 661–719 (1954).

    Google Scholar 

  9. H. Kogelnik and R. V. Schmidt, Switched directional couplers with alternating Δβ, IEEE J. Quantum Electron. QE-12, 396–401 (1976).

    Article  Google Scholar 

  10. R. V. Schmidt and H. Kogelnik, Electro-optically switched coupler with stepped Δ β reversal using Ti-diffused LiNbO3 waveguides, Appl. Phys. Lett. 28, 503–506 (1976).

    Article  Google Scholar 

  11. S. Thaniyavarn, Cross-talk characteristics of Δβ phase reversal directional coupler switches, in: Integrated Optical Circuit Engineering II (S. Sriram, ed.), Proc. SPIE 578, 1985, pp. 192–198.

    Chapter  Google Scholar 

  12. J. E. Watson, polarization-independent 1 x 16 optical switch using Ti:LiNbP3 waveguides, Conference on Optical Tiber Communication, San Diego, Feb. 11–13, 1985, p. 110.

    Google Scholar 

  13. R. C. Alferness and P. S. Cross, Filter characteristics of codirectionally coupled waveguides with weighted coupling, IEEE J. Quantum Electron. QE-14, 843–847 (1978).

    Article  Google Scholar 

  14. R. C. Alferness, Optical directional couplers with weighted coupling, Appl. Phys. Lett. 35, 260–262 (1979).

    Article  Google Scholar 

  15. W. J. Minford, S. K. Korotky, and R. C. Alferness, Low-loss Ti:LiNbO3 waveguide bends at λ = 1.3 µm, IEEE Trans. Microwave Theory Tech. MTT-30, 1790–1794 (1982).

    Article  Google Scholar 

  16. S. K. Korotky, E. A. J. Marcatilli, J. J. Veselka, and R. H. Bosworth, Greatly reduced losses for small-radius bends in Ti :LiNbO3 waveguides, Proceedings of the European Conference on Integrated Optics, Berlin, 1985.

    Google Scholar 

  17. L. McCaughan, Low-loss polarization-independent electrooptical switches at λ = 1.3 µm, J. Lightwave Technol. LT-2, 51–55 (1984).

    Article  Google Scholar 

  18. I. P. Kaminow, An Introduction to Electrooptic Devices, Academic Press, New York (1974).

    Google Scholar 

  19. A. Yariv, Introduction to Optical Electronics, Holt, Rinehart & Winston, New York (1976).

    Google Scholar 

  20. R. C. Alferness, Waveguide electrooptic modulators, IEEE Trans. Microwave Theory Tech. MTT-30, 1121 1137 (1982).

    Article  Google Scholar 

  21. R. C. Alferness, Polarization-independent optical directional coupler switch using weighted coupling, Appl. Phys. Lett. 35, 748–750 (1979).

    Article  Google Scholar 

  22. L. McCaughan and G. A. Bogert, 4 × 4 strictly nonblocking integrated Ti:LiNbO3 switch array, Conference on Optical Tiber Communications, San Diego, Feb. 11–13, 1985, pp. 76–77.

    Google Scholar 

  23. I. P. Kaminow, Polarization in optical fibers, IEEE J. Quantum Electron. QE-17, 15 22 (1981).

    Article  Google Scholar 

  24. R. Ulrich and A. Simon, Polarization optics of twisted single-mode fibers, Appl. Opt. 18, 2241–2251 (1979).

    Article  Google Scholar 

  25. J. R. Simpson, R. H. Stolen, F. M. Sears, W. Pleibel, J. B. MacChesney, and R. E. Howard, A single-polarization fiber, J. Lightwave Technol. LT-1, 370 373 (1983).

    Article  Google Scholar 

  26. S. C. Rashleigh and R. H. Stolen, Preservation of polarization in single-mode fibers, Fiber-opt. Technol. May, 155–161 (1983).

    Google Scholar 

  27. M. Izutsu, Y. Yamane, and M. Tadasi, Broad-band traveling-wave modulator using a LiNbO3 optical waveguide, IEEE J. Quantum Electron. QE-13, 287 290 (1977).

    Article  Google Scholar 

  28. K. Kubota, J. Noda, and O. Mikami, Traveling wave optical modulator using a directional coupler LiNbO3 waveguide, IEEE J. Quantum Electron. QE-16, 754–760 (1980).

    Article  Google Scholar 

  29. R. C. Alferness, Guided-wave devices for optical communications, IEEE J. Quantum Electron. QE-17, 946–959 (1981f).

    Article  Google Scholar 

  30. S. K. Korotky, R. C. Alferness, C. H. Joyner, and L. L. , 14 Gbit/sec optical signal encoding for X — 1.32 µm with double pulse drive of a Ti:LiNbO3 waveguide modulator, Electron. Lett. 20, 132–133 (1984).

    Article  Google Scholar 

  31. S. Yamada and M. Minakata, DC drift phenomena in LiNbO3 optical waveguide devices, Jpn. J. Appl. Phys. 20, 733 (1981).

    Article  Google Scholar 

  32. O. G. Ramer, C. Mohr, and J. Pikulski, Polarization-independent optical switch with multiple sections of Aß reversal and a Gaussian taper function, IEEE J. Quantum Electron. QE-18, 1772–1779 (1982).

    Article  Google Scholar 

  33. J. R. Erickson and H. S. Hinton, Implementing a Ti:LiNbO3 4 × 4 nonblocking interconnection network, in: Integrated Optical Circuit Engineering II (S. Sriram, ed.), Proc. SPIE 578, 1985, pp. 192–198.

    Google Scholar 

  34. F. T. Stone, J. E. Watson, D. T. Moser, and W. J. Minford, Performance and yield of pilot-line quantities of lithium niobate switches, SPIE OE/Fibers’89, Boston (1989).

    Google Scholar 

  35. J. E. Watson, M. A. Mibrodt, K. Bahadori, M. F. Dautartas, C. T. Kemmerer, D. T. Moser, A. W. Schelling, T. O. Murphy, J. J. Veselka, and D. A. Herr, A low-voltage 8 × 8 Ti: LiNbO3 switch with a dilated-Benes architecture, IEEE J. Lightwave Technol. 8, 794–801 (1990).

    Article  Google Scholar 

  36. V. Ramaswamy, M. D. Divino, and R. D. Standley, Balanced bridge modulator switch using Ti-difTused LiNbO3 strip waveguides, Appl. Phys. Lett. 32, 644–646 (1978).

    Article  Google Scholar 

  37. R. G. Hunsperger, Integrated Optics: Theory and Technology, Chapter 7, Springer-Verlag, Berlin (1984).

    Google Scholar 

  38. A. Neyer, Electro-optic X-switch using single-mode Ti:LiNbO3 channel waveguides, Electron. Lett. 19, 553–554 (1983).

    Article  Google Scholar 

  39. A. Neyer, W. Mevenkamp, and B. Kretschmann, Optimization of X-switches for integrated optical switching networks, Technical Digest of the Fifth International Conference on Integrated Optics and Optical Fiber Communications/11th European Conference on Optical Communications, Venetia, Italy, 1985, Vol. 1, pp. 369 372.

    Google Scholar 

  40. A. Neyer, W. Mevenkamp, and B. Kretschmann, Nonblocking 4 × 4 switch array with sixteen X-switches in Ti:LiNbO3, Technical Digest of the Topical Meeting on Integrated and Guided-Wave Optics, Atlanta, 1986, Paper WAA2.

    Google Scholar 

  41. E. Voges and A. Neyer, Integrated-optic devices on LiNbO3 for optical communications, J. Lightwave Technol. LT-5, 1229–1238 (1987).

    Article  Google Scholar 

  42. J. Ctyroky, Voltage length product of X and Z-cut Ti:LiNbO3 directional coupler and BOA switches: A comparison, J. Opt. Commun. 7, 139 143 (1986).

    Google Scholar 

  43. Y. Silberberg, P. Perlmutter, and J. E. Baran, Digital optical switch, Appl. Phys. Lett. 51, 1230 1232(1987).

    Article  Google Scholar 

  44. M. J. O’Mahony, Semiconductor laser optical amplifiers for use in future fiber systems, J. Lightwave Technol. 6, 531–544 (1988).

    Article  Google Scholar 

  45. L. D. Westbrook, Measurements of dg/dN and dn/dN and their dependence on photon energy in 1.5 µm InGaAsP laser diodes, Proc. IEE 133, 135–141.

    Google Scholar 

  46. M. J. Adams, H. J. Westlake, M. J. O’Mahony, and I. D. Henning, A comparison of active and passive bistability in semiconductors, IEEE J. Quantum Electron. QE-21, (1985).

    Google Scholar 

  47. H. J. Westlake and M. J. O’Mahony, Gain characteristics of a 1.5 µm DCPBH InGaAsP resonant optical amplifier, Electron. Lett. 21, 33–34 (1985).

    Article  Google Scholar 

  48. J. C. Simon, Semiconductor laser amplifier for single-mode optical fiber communications, J. Opt. Comm. 4, 51–62 (1983).

    Google Scholar 

  49. G. Eisenstein and R. M. Jopson, Measurements of the gain spectrum of near-traveling-wave and Fabry Perot semiconductor optical amplifiers at 1.5 µm, Int. J. Electron. 60, 113–121 (1986).

    Article  Google Scholar 

  50. I. W. Marshall, Low loss coupling between semiconductor lasers and single mode fiber using tapered lensed fibers, Br. Telecommun. Tech. J. 4, (1986).

    Google Scholar 

  51. M. J. O’Mahony, I. W. Marshall, H. J. Westlake, and W. G. Stallard, Wide-band optical receiver using traveling wave laser amplifier, Electron. Lett. (1986).

    Google Scholar 

  52. I. D. Henning, M. J. Adams, and J. V. Collins, Performance predictions from a new optical amplifier model, IEEE J. Quantum Electron. QE-21, 609–613 (1985).

    Article  Google Scholar 

  53. T. Mukai, Y. Yamamoto, and T. Kimura, S/N and error rate performance in AlGaSa semiconductor laser preamplifier and linear repeater systems, IEEE J. Quantum Electron. QE-18, 1560–1568 (1982).

    Article  Google Scholar 

  54. D. M. Fye, Practical limitations on optical amplifier performance, IEEE J. Lightwave Technol. LT-2, 403–406 (1984).

    Article  Google Scholar 

  55. A. Himeno and M. Kobayashi, 4 × 4 optical-gate matrix switch, J. Lightwave Technol. LT-3, 230 235 (1985).

    Article  Google Scholar 

  56. A. A. Sawchuk and T. C. Strand, Digital optical computing, Proc. IEEE, July 1984, pp. 758–779.

    Google Scholar 

  57. G. D. Boyd, Quantum-well Fabry Perot electro-absorption and refraction modulators and bistability, in: OSA Proceedings on Photonic Switching (H. S. Hinton and J. W. Goodman, eds.), Vol. 8, pp. 222–226, Optical Society of America, Washington, D.C. (1991).

    Google Scholar 

  58. W. E. Ross, D. Psaltis, and R. H. Anderson, 2-D magneto optic spatial light modulator for signal processing, SPIE Conference, Crystal City-Arlington, Va., May 3–7, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hinton, H.S., Erickson, J.R., Cloonan, T.J., Tooley, F.A.P., McCormick, F.B., Lentine, A.L. (1993). Optically Transparent Devices. In: An Introduction to Photonic Switching Fabrics. Applications of Communications Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9171-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9171-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9173-0

  • Online ISBN: 978-1-4757-9171-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics