Advertisement

Introduction

  • H. Scott Hinton
  • J. R. Erickson
  • T. J. Cloonan
  • F. A. P. Tooley
  • F. B. McCormick
  • A. L. Lentine
Part of the Applications of Communications Theory book series (ACTH)

Abstract

As our information-hungry society moves toward ubiquitous broadband services there will be the need for telecommunications switching systems able to switch and control large numbers of users sending and receiving this high-bit-rate information. Aggregate capacities of these future systems could exceed 1 Tb/s by the turn of the century. Some of the new services that will require these large capacities include the transport and switching of NTSC video, enhanced-quality television (EQTV), high-definition television (HDTV), switched video, high-data-rate file transfers and information retrieval, animated graphics, in addition to the need for an interconnect for diskless workstations and local area networks/metropolitan area networks (LAN/MAN). These new services are the future of telecommunications companies and thus the driving force to bring photonics into switching systems.

Keywords

Directional Coupler Semiconductor Optical Amplifier Output Channel Spatial Light Modulator Optical Interconnection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Bellamy, Digital Telephony, Wiley, New York (1982).Google Scholar
  2. 2.
    J. Y. Hui, Switching and Traffic Theory for Integrated Broadband Networks, Kluwer Academic, Boston (1990).MATHCrossRefGoogle Scholar
  3. 3.
    J. E. Berthold, Broadband electronic switching, in: OSA Proceedings on Photonic Switching (J. E. Midwinter and H. S. Hinton, eds.), Vol. 3, pp. 66–73, Optical Society of America, Washington, D.C. (1989).Google Scholar
  4. 4.
    H. S. Hinton, Photonic switching technology applications, AT&T Tech. J. 66, 41 53 (1987).Google Scholar
  5. 5.
    B. S. Glance, K. Pollack, C. A. Burrus, B. L. Kasper, G. Eisenstein, and L. W. Shultz, WDM coherent optical star network, IEEE. J. Lightwave Technol. LT-6, 67–72 (1988).CrossRefGoogle Scholar
  6. 6.
    T. E. Darcie, Subcarrier multiplexing for multiple-access lightwave networks, IEEE J. Lightwave Technol. LT-5, 1103–1110 (1987).CrossRefGoogle Scholar
  7. 7.
    P. W. Smith, On the physical limits of digital optical switching and logic elements, Bell Syst. Tech. J. 61, 1975–1993 (1982).Google Scholar
  8. 8.
    C. M. Bowden, M. Ciftan, and H. R. Robl, Optical Bistability, Plenum Press, New York (1981). See S. L. McCall and H. M. Gibbs, Conditions and limitations in intrinsic optical bistability, pp. 1–7.CrossRefGoogle Scholar
  9. 9.
    D. B. Tuckerman and R. F. W. Pease, High-performance heat sinking for VLSI, IEEE Electron Device Lett. EDL-2, 126–129 (1981).CrossRefGoogle Scholar
  10. 10.
    A. L. Lentine, L. M. F. Chirovsky, L. A. D’Asaro, C. W. Tu, and D. A. B. Miller, Energy scaling and subnanosecond switching of symmetric self-electrooptic effect devices, IEEE Photon. Technol. Lett. 1, 129–131 (1989).CrossRefGoogle Scholar
  11. 11.
    D. A. B. Miller, Optics for low-energy communication inside digital processors: Quantum detectors, sources, and modulators as efficient impedance converters, Opt. Lett. 14, 146–148 (1989).CrossRefGoogle Scholar
  12. 12.
    M. R. Feldman, S. C. Esener, C. C. Guest, and S. H. Lee, Comparison between optical and electrical interconnects based on power and speed considerations, Appl. Opt. 27, 1742–1751 (1988).CrossRefGoogle Scholar
  13. 13.
    H. H. Arsenault, T. Szoplik, and B. Macukow, Optical Processing and Computing, pp. 1–31, Academic Press, New York (1989).Google Scholar
  14. 14.
    R. A. Nordin, A. E. J. Levi, R. N. Nottenburg, J. O’Gorman T. Tanbun-Ek, and R. A. Logan, A systems perspective on digital interconnection technology, IEEE J. Lightwave Technol. LT-10, 811–827 (1992).CrossRefGoogle Scholar
  15. 15.
    See B. J. Landman and R. L. Russo, Pin vs. block relationships for partitions of logic graphs, IEEE Trans. Comput. C-20, 1469–1479 (1971).CrossRefGoogle Scholar
  16. 16.
    R. R. Tummala and E. J. Rymaszewski, Microelectronics Packaging Handbook, Van Nos-trand Reinhold, Princeton, N.J. (1989).Google Scholar
  17. 17.
    J. W. Goodman, Introduction to Fourier Optics, McGraw-Hill, New York (1968).Google Scholar
  18. 18.
    H. S. Hinton, Photonic switching using directional couplers, IEEE Commun. Mag. 25, 16–26 (1985).CrossRefGoogle Scholar
  19. 19.
    R. V. Schmidt and R. C. Alferness, Directional coupler switches, modulators, and filters using alternating Δβ techniques, IEEE Trans. Circuits Syst. CAS-26, 1099–1108 (1979).CrossRefGoogle Scholar
  20. 20.
    R. A. Spanke, Architectures for guided-wave optical space switching networks, IEEE Commun. Mag. 25, 42–48 (1987).CrossRefGoogle Scholar
  21. 21.
    P. Granestand, B. Stoltz, L. Thylen, K. Bergual, W. Döldissen, H. Heinrich, and D. Hoffmann, Strictly nonblocking 8 × 8 integrated optical switch matrix, Electron. Lett. 22, (1986).Google Scholar
  22. 22.
    G. A. Bogert, A low crosstalk 4 × 4 Ti:LiNbO3 optical switch with permanently attached polarization-maintaining fiber arrays, Topical Meeting on Integrated and Guided-Wave Optics, Atlanta, February (1986).Google Scholar
  23. 23.
    H. S. Hinton, A non-blocking optical interconnection network using directional couplers, Proceedings of the IEEE Global Telecommunications Conference, Vol. 2, pp. 885–889 (1984).Google Scholar
  24. 24.
    R. A. Spanke, Architectures for large nonblocking optical space switches, IEEE J. Quantum Electron. QE-22, 964–967 (1986).CrossRefGoogle Scholar
  25. 25.
    T.-Y. Feng, A survey of interconnection networks, IEEE Comput. Dec. 12–27 (1981).Google Scholar
  26. 26.
    G. W. Richards and F. K. Hwang, A two-stage rearrangeable broadcast switching network, IEEE Trans. Commun. COM-33, 1025–1035 (1985).CrossRefGoogle Scholar
  27. 27.
    M. J. O’Mahony, Semiconductor laser optical amplifiers for use in future fiber systems, IEEE J. Lightwave Technol. LT-6, 531–544 (1988).CrossRefGoogle Scholar
  28. 28.
    M. Gustavsson and L. Thylen, Switch matrix with semiconductor laser amplifier gate switches: A performance analysis, in: OSA Proceedings on Photonic Switching (J. E. Midwinter and H. S. Hinton, eds.), Vol. 3, pp. 77–79, Optical Society of America, Washington, D.C. (1989).Google Scholar
  29. 29.
    A. D. Fisher, A review of spatial light modulators, Topical Meeting on Optical Computing, Incline Village, Nev., March 18–20, 1985.Google Scholar
  30. 30.
    W. E. Ross, D. Psaltis, and R. H. Anderson, 2-D magneto optic spatial light modulator for signal processing, SPIE Conference, Crystal City-Arlington, Va., May 3–7, 1982.Google Scholar
  31. 31.
    A. R. Tanguay, Materials requirements for optical processing and computer devices, Opt. Eng. 24, 2–18 (1985).Google Scholar
  32. 32.
    A. Himeno and M. Kobayashi, 4 × 4 optical-gate matrix switch, IEEE J. Lightwave Technol. LT-3, 230–235 (1985).CrossRefGoogle Scholar
  33. 33.
    D. R. Pape and L. J. Hornbeck, Characteristics of the deformable mirror device for optical information processing, Opt. Eng. 22, 675–681 (1983).CrossRefGoogle Scholar
  34. 34.
    G. Livescu, D. A. B. Miller, J. E. Henry, A. C. Gossard, and J. H. English, Spatial light modulator and optical dynamic memory using integrated self electro-optic effect devices, Proceedings of the Conference on Lasers and Electro-Optics (Postdeadline Paper), April 26–May 1, 1987, pp. 283–284.Google Scholar
  35. 35.
    A. R. Dias, R. F. Kaiman, J. W. Goodman, and A. A. Sawchuk, Fiber-optic crossbar switch with broadcast capability, Opt. Eng. 27, 955–960 (1988).CrossRefGoogle Scholar
  36. 36.
    K. Oshima, T. Kitayama, M. Yamaki, T. Matsui, and K. Ito, Fiber-optic local area passive network using burst TDMA scheme, IEEE J. Lightwave Technol. LT-3, 502–510 (1985).CrossRefGoogle Scholar
  37. 37.
    R. A. Thompson, R. V. Anderson, J. V. Camlet, and P. P. Giordano, Experimental modular switching system with a time-multiplexed photonic center stage, in: OSA Proceedings on Photonic Switching (J. E. Midwinter and H. S. Hinton, eds.), Vol. 3, pp. 212–218, Optical Society of America, Washington, D.C. (1989).Google Scholar
  38. 38.
    H. Goto, K. Nagashima, and S. Suzuki, Photonic time-division switching technology, in: Photonic Switching: Proceedings of the First Topical Meeting (T. K. Gustafson and P. W. Smith, eds.), pp. 151–157, Springer-Verlag, Berlin (1987).Google Scholar
  39. 39.
    S. V. Ramanan and H. F. Jordon, Serial array shuffle-exchange architecture for universal permutation of time-slots, Digital Optical Computing II, SPIE 1215, 330 342 (1990).Google Scholar
  40. 40.
    J. P. Ofman, A universal automation, Trans. Moscow Math. Soc. 14 (1965) [translation published by Am. Math. Soc, Providence, R.I. (1967), pp. 200 215].MathSciNetMATHGoogle Scholar
  41. 41.
    M. Skov, Implementation of physical and media access protocols for high speed networks, IEEE Commun. Mag. June, 45 53 (1989).Google Scholar
  42. 42.
    A. A. M. Saleh and H. Kogelnik, Reflective single-mode fiber-optic passive star couplers, IEEE J. Lightwave Technol. LT-6, 392 398 (1988).CrossRefGoogle Scholar
  43. 43.
    P. R. Prucnal and P. A. Perrier, A new direction in photonic switching: A collapsed-network space-division switching architecture, in: OSA Proceedings on Photonic Switching, (J. E. Midwinter and H. S. Hinton, eds.), Vol. 3, pp. 212–218, Optical Society of America, Washington, D.C. (1989).Google Scholar
  44. 44.
    M. Fijiwara, N. Shimosaka, M. Nishio, S. Suzuki, S. Yamazaki, S. Murata, and K. Kaede, A coherent photonic wavelength-division switching system for broadband networks, Proceedings of the 14th European Conference on Optical Communication (ECOC ’88), Brighton, U.K., pp. 139–142.Google Scholar
  45. 45.
    H. Kobrinski, R. M. Bulley, M. S. Goodman, M. P. Vecchi, C. A. Brackett, L. Curtis, and J. L. Gimlett, Demonstration of high capacity in the LAMBDANET architecture: A multiwavelength optical network, Electron. Lett. 23, 824–826 (1987).CrossRefGoogle Scholar
  46. 46.
    I. P. Kaminow, P. P. Iannone, J. Stone, and L. W. Stulz, FDM-FSK star network with a tunable optical filter demultiplexor, Electron. Lett. 23, 1102–1103 (1987).CrossRefGoogle Scholar
  47. 47.
    B. Glance, J. Stone, K. J. Pollack, P. J. Fitzgerald, C. A. Burrus, Jr., B. L. Kasper, and L. W. Stulz, Densely spaced FDM coherent star network with optical signals confined to equally spaced frequencies, IEEE J. Lightwave Technology, LT-6, 1770–1781 (1988).CrossRefGoogle Scholar
  48. 48.
    M. S. Goodman, E. Arthurs, J. M. Cooper, H. Kobrinski, and M. P. Vecchi, Demonstration of fast wavelength tuning for a high performance packet switch, Proceedings of the 14th European Conference on Optical Communication (ECOC 188), Brighton, U.K., pp. 255–258.Google Scholar
  49. 49.
    H. S. Hinton, Architectural considerations for photonic switching networks, IEEE J. Sel. Areas Commun. SAC-6, 1209–1226 (1988).CrossRefGoogle Scholar
  50. 50.
    T. J. Cloonan and F. B. McCormick, Photonic switching applications of 2-D and 3-D crossover networks based on 2-input, 2-output switching nodes, Appl. Opt. 30, 2309–2323 (1991).CrossRefGoogle Scholar
  51. 51.
    K. Padmanabhan and A. N. Netravali, Dilated networks for photonic switching, IEEE Trans. Commun. COM-35, 1357–1365 (1987).CrossRefGoogle Scholar
  52. 52.
    G. W. Richards, U.S. Patents 4,993,016 and 4,991,168.Google Scholar
  53. 53.
    G. W. Taylor, J. G. Simmons, A. Y. Cho, and R. S. Mand, A new double heterostructure optoelectronic device using molecular beam epitaxy, J. Appl. Phys. 59, 596–600 (1986).CrossRefGoogle Scholar
  54. 54.
    J. L. Jewell, M. C. Rushford, and H. M. Gibbs, Use of a single nonlinear Fabry Perot etalon as optical logic gates, Appl. Phys. Lett. 44, 172–174 (1984).CrossRefGoogle Scholar
  55. 55.
    S. D. Smith, Optical bistability, photonic logic, and optical computation, Appl. Opt. 25, 1550 1564(1986).CrossRefGoogle Scholar
  56. 56.
    A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, and L. M. F. Chirovsky, Symmetric self-electro-optic effect device: Optical set-reset latch, differential logic gate, and differential modulator/detector, IEEE J. Quantum Electron. QE-25, 1928 1936 (1989).CrossRefGoogle Scholar
  57. 57.
    K. Kasahara, Y. Tashiro, M. Sugimoto, N. Hamao, and T. Yanase, Double heterostructure optoelectronic switch as a dynamic memory with low-power consumption, Appl. Phys. Lett. 52, 679–681 (1988).CrossRefGoogle Scholar
  58. 58.
    D. A. B. Miller, M. D. Feuer, T. Y. Chang, S. C. Chunk, J. E. Henry, D. J. Burrows, and D. S. Chemla, Field-effect transistor self-electrooptic effect device: Integrated photodiode, quantum well modulator and transistor, IEEE Photon. Technol. Lett. 1, pp. 62–64 (1989).CrossRefGoogle Scholar
  59. 59.
    T. J. Cloonan, M. J. Herron, F. A. P. Tooley, G. W. Richards, F. B. McCormick, E. Kerbis, J. L. Brubaker, and A. L. Lentine, An all-optical implementation of a 3D crossover switching network, IEEE Photon. Technol Lett. 2, 438–440 (1990).CrossRefGoogle Scholar
  60. 60.
    T. J. Cloonan, G. W. Richards, F. B. McCormick, and A. L. Lentine, Extended generalized shuffle network architectures for free-space photonic switching, in: OSA Proceedings on Photonic Switching (H. S. Hinton and J. W. Goodman, eds.), Vol. 8, pp. 43–47, Optical Society of America, D.C. (1991).Google Scholar
  61. 61.
    D. B. Sarrazin, H. F. Jordan, and V. P. Heuring, Digital fiber-optic delay line memory, Digital Optical Computing II, SPIE 1215, 366–375 (1990).CrossRefGoogle Scholar
  62. 62.
    N. Shibata, Y. Katsuyama, Y. Mitsunaga, M. Tateda, and S. Seikai, Thermal characteristics of optical pulse transit time delay and fiber strain in a single-mode optical fiber cable, Appl. Opt. 22, 979–984 (1983).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • H. Scott Hinton
    • 1
  • J. R. Erickson
  • T. J. Cloonan
  • F. A. P. Tooley
  • F. B. McCormick
  • A. L. Lentine
  1. 1.McGill UniversityMontrealCanada

Personalised recommendations