Structure and Dynamics of Charged Fluids

  • J. P. Hansen
Part of the Physics of Solids and Liquids book series (PSLI)


“Charged fluids” is a generic name for a vast variety of gaseous or liquid systems containing charged particles like positive or negative ions and radicals, charged polymers, and free electrons. Systems of charged particles occur in many fields of physics and chemistry, ranging from astrophysics and plasma physics to electrochemistry and colloid science. The common link between all these widely different systems is the predominance of long-range Coulomb interactions between the charged particles that confer to these systems a certain number of characteristic collective properties not found in fluids of neutral atoms or molecules. The present chapter is devoted to an overview of the essential structural and dynamic properties of some charged fluids of importance in condensed matter and chemical physics. This does exclude the very important field of plasma physics, although contact will be made with concepts as well as simple models borrowed from that field. We shall in fact be essentially concerned with ionic liquids and solutions, but some reference will be made to more “exotic” systems like macromolecular ionic systems and two-dimensional Coulomb fluids.


Ionic Liquid Molten Salt Plasmon Mode Pair Distribution Function Time Correlation Function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Debye and E. Mickel, Z. Phys. 24, 185, 305 (1923).Google Scholar
  2. 2.
    J. P. Hansen, J. Phys. C 14, L-151 (1981).CrossRefGoogle Scholar
  3. 3.
    J. P. Hansen and I. R. McDonald, Theory of Simple Liquids, Academic Press, London (1976).Google Scholar
  4. 4.
    J. P. Hansen, G. M. Torrie and P. Vieillefosse, Phys. Rev. A 16, 2153 (1977).CrossRefGoogle Scholar
  5. 5.
    F. G. Edwards, J. E. Enderby, R. A. Rowe, and D. I. Page, J. Phys. C 8, 3483 (1975).CrossRefGoogle Scholar
  6. 6.
    E. M. Adams, I. R. McDonald, and K. Singer, Proc. R. Soc. London, Ser. A 357, 37 (1977).CrossRefGoogle Scholar
  7. 7.
    J. E. Enderby, D. M. North, and P. A. Egelstaff, Philos. Mag. 14, 961 (1966).CrossRefGoogle Scholar
  8. 8.
    L. V. Woodcock and K. Singer, Trans. Faraday Soc. 67, 12 (1971).CrossRefGoogle Scholar
  9. 9.
    J. P. Hansen and I. R. McDonald, Phys. Rev. A 11, 2111 (1975).CrossRefGoogle Scholar
  10. 10.
    A. B. Bhatia and D. E. Thornton, Phys. Rev. A 2, 3004 (1970).CrossRefGoogle Scholar
  11. 11.
    R. Kubo, Rep. Prog. Phys. 29, 255 (1966).CrossRefGoogle Scholar
  12. 12.
    M. Parrinello and M. P. Tosi, Riv. Nuovo Cimento 2, No. 6 (1979).Google Scholar
  13. 13.
    J. G. Kirkwood and F. Buff, J. Chem. Phys. 19, 774 (1951).CrossRefGoogle Scholar
  14. 14.
    P. Vieillefosse and J. P. Hansen, Phys. Rev. A 12, 1106 (1975).CrossRefGoogle Scholar
  15. 15.
    See, e.g., D. Pines and Ph. Nozières, Theory of Quantum Fluids, Benjamin, New York (1966).Google Scholar
  16. 16.
    G. Stell, in: Statistical Mechanics, Part A ( B. J. Berne, ed.), Plenum Press, New York (1977).Google Scholar
  17. 17.
    E. Salpeter, Aust. J. Phys. 7, 353 (1954).CrossRefGoogle Scholar
  18. 18.
    P. Vieillefosse, J. Phys. (Paris) 42, 723 (1981).CrossRefGoogle Scholar
  19. 19.
    M. Baus and J. P. Hansen, Physics Reports 59, 1 (1980).CrossRefGoogle Scholar
  20. 20.
    J. C. Rasaiah, D. N. Card, and J. P. Valleau, J. Chem. Phys. 56, 248 (1972).CrossRefGoogle Scholar
  21. 21.
    G. M. Abernethy, M. Dixon, and M. J. Gillan, Phil. Mag. B 43, 1113 (1981).CrossRefGoogle Scholar
  22. 22.
    B. Larsen, J. Chem. Phys. 68, 4511 (1978).CrossRefGoogle Scholar
  23. 23.
    Y. Rosenfeld and N. W. Ashcroft, Phys. Rev. A 20, 1208 (1979).CrossRefGoogle Scholar
  24. 24.
    H. Iyetomi and S. Ichimaru, Phys. Rev. A 25, 2434 (1982).CrossRefGoogle Scholar
  25. 25.
    E. Waisman and J. Lebowitz, J. Chem. Phys. 56, 3086, 3093 (1972).CrossRefGoogle Scholar
  26. 26.
    L. Blum, Mol. Phys. 30, 1529 (1975)CrossRefGoogle Scholar
  27. L. Blum and J. S. HSye, J. Phys. Chem. 81, 1311 (1977).CrossRefGoogle Scholar
  28. 27.
    M. C. Abramo, C. Caccamo, G. Pizzimenti, M. Parrinello, and M. P. Tosi, J. Chem. Phys. 68, 2889 (1978).CrossRefGoogle Scholar
  29. 28.
    J. S. Hlye and G. Stell, J. Chem. Phys. 67, 524 (1977).CrossRefGoogle Scholar
  30. 29.
    M. C. Abramo, C. Caccamo, and G. Pizzimenti, Lettere al N. Cim. 30, 297 (1981).CrossRefGoogle Scholar
  31. 30.
    P. Martin, in: Many-Body Physics ( C. De Witt and R. Balian, eds.), Gordon and Breach, New York (1967).Google Scholar
  32. 31.
    D. Forster, Hydrodynamic Fluctuations, Broken Symmetry and Correlation Functions, Benjamin, Reading, MA (1975).Google Scholar
  33. 32.
    J. P. Hansen, in: Microscopic Structure and Dynamics of Liquids ( J. Dupuy and A. J. Dianoux, eds.), Plenum Press, New York (1978).Google Scholar
  34. 33.
    H. Mori, Prog. Theor. Phys. 33, 423 (1965)CrossRefGoogle Scholar
  35. H. Mori, Prog. Theor. Phys. 34, 399 (1965).CrossRefGoogle Scholar
  36. 34.
    See, e.g., T. E. Faber, An Introduction to the Theory of Liquid Metals, Cambridge University Press (1972).Google Scholar
  37. 35.
    H. Minoo, C. Deutsch, and J. P. Hansen, J. Phys. (Paris), Lett. 38, L191 (1977).CrossRefGoogle Scholar
  38. 36.
    G. Jacucci and I. R. McDonald, Physica A 80, 607 (1975).CrossRefGoogle Scholar
  39. 37.
    P. C. Martin, Phys. Rev. 161, 143 (1967).CrossRefGoogle Scholar
  40. 38.
    P. V. Giaquinta, M. Parrinello, and M. P. Tosi, Phys. Chem. Liq. 5, 305 (1976).CrossRefGoogle Scholar
  41. 39.
    W. L. Slattery, G. D. Doolen, and H. E. De Witt, Phys. Rev. A 21, 2087 (1980).CrossRefGoogle Scholar
  42. 40.
    J. P. Hansen, I. R. McDonald, and E. L. Pollock, Phys. Rev. A 11, 1025 (1975).CrossRefGoogle Scholar
  43. 41.
    See M. Baus and J. P. Hansen, Phys. Rep. 59, 1 (1980) for references; a very recent approach is that of T. Gaskell, J. Phys. C 15, 1601 (1982).Google Scholar
  44. 42.
    J. Wallenborn and M. Baus, Phys. Rev. A 18, 1737 (1978).CrossRefGoogle Scholar
  45. 43.
    S. W. Lovesey, J. Phys. C 4, 3057 (1971).CrossRefGoogle Scholar
  46. 44.
    H. M. Van Horn, Phys. Today (January 1979).Google Scholar
  47. 45.
    S. Galam and J. P. Hansen, Phys. Rev. A 14, 816 (1976).CrossRefGoogle Scholar
  48. 46.
    M. P. Tosi, in Electron Correlations in Solids, Molecules and Atoms (J. Devreese and F. Brosens, eds.) Plenum, 1983.Google Scholar
  49. 47.
    M. J. Huijben and W. Van der Lugt, in: Liquid Metals, 1976, p. 141, Conférence séries N° 30, The Institute of Physics, Bristol (1977).Google Scholar
  50. 48.
    N. W. Ashcroft, J. Phys. C 1, 232 (1968).CrossRefGoogle Scholar
  51. 49.
    D. Bohm and T. Stayer, Phys. Rev. 84, 836 (1951).CrossRefGoogle Scholar
  52. 50.
    J. C. Brown, P. N. Pusey, J. W. Goodwin, and R. H. Ottenvill, J. Phys. A 8, 664 (1975).CrossRefGoogle Scholar
  53. P. Pieranski, in: Physics of Defects, Les Houches Session XXXV (R. Balian et al.,eds.), North-Holland, Amsterdam (1981).Google Scholar
  54. 52.
    E. J. W. Verwey and J. T. G. Overbeek, Theory of the Stability of Lyophobic Colloids, Elsevier, Amsterdam (1948).Google Scholar
  55. 53.
    See, e.g., J. B. Hayter and J. Penfold, Mol. Phys. 42, 109 (1981).CrossRefGoogle Scholar
  56. 54.
    J. P. Hansen and J. B. Hayter, Mol. Phys. 46, 651 (1982).CrossRefGoogle Scholar
  57. See, e.g., W. Hess and R. Klein, Adv. in Phys. 32 173 (1983).Google Scholar
  58. 56.
    M. P. Tosi and F. G. Fumi, J. Phys. Chem. Solids 25 45 (1964).CrossRefGoogle Scholar
  59. 57.
    M. J. L. Sangster and M. Dixon, Adv. Phys. 25, 247 (1976).CrossRefGoogle Scholar
  60. 58.
    J. E. Enderby and G. W. Neilson, Adv. Phys. 29, 323 (1980).CrossRefGoogle Scholar
  61. 59.
    J. Bosse and T. Munakata, Phys. Rev. A 24, 2261 (1981).CrossRefGoogle Scholar
  62. 60.
    J. R. D. Copley and A. Rahman, Phys. Rev. A 13, 2276 (1976).CrossRefGoogle Scholar
  63. 61.
    G. Jacucci, I. R. McDonald, and A. Rahman, Phys. Rev. A 13, 1581 (1976).CrossRefGoogle Scholar
  64. 62.
    J. R. D. Copley and G. Dolling, J. Phys. C 11, 1259 (1978).CrossRefGoogle Scholar
  65. 63.
    L. Blum, Chem. Phys. Lett. 26, 200 (1974).CrossRefGoogle Scholar
  66. S. A. Adelman and J. M. Deutch, J. Chem. Phys. 60, 3935 (1974).CrossRefGoogle Scholar
  67. 64.
    M. S. Wertheim, Mol. Phys. 25, 211 (1973).CrossRefGoogle Scholar
  68. 65.
    D. Y. C. Chan, D. J. Mitchell, and B. W. Ninham, J. Chem. Phys. 70, 2946 (1979).CrossRefGoogle Scholar
  69. 66.
    D. Levesque, J. J. Weis, and G. N. Patey, J. Chem. Phys. 72, 1887 (1980).CrossRefGoogle Scholar
  70. 67.
    C. C. Grimes and G. Adams, Phys. Rev. Lett. 42, 795 (1979).CrossRefGoogle Scholar
  71. 68.
    H. Totsuji and H. Kaleya, Phys. Rev. A 22, 1220 (1980).CrossRefGoogle Scholar
  72. 69.
    J. P. Hansen, D. Levesque, and J. J. Weis, Phys. Rev. Lett. 43, 979 (1979).CrossRefGoogle Scholar
  73. 70.
    P. Carini and G. Kalman, Phys. Lett. 105A, 229 (1984).CrossRefGoogle Scholar
  74. 71.
    See, however, R. L. McGreevy, E. W. J. Mitchell and F. M. A. Margaca, J. Phys. C 17, 775 (1984).CrossRefGoogle Scholar
  75. 72.
    For a recent review, see J. P. Hansen, J. Phys. (Paris) 45, C7–97 (1984).Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • J. P. Hansen
    • 1
  1. 1.Laboratoire de Physique Théorique des Liquides (Equipe Associée au C.N.R.S.)Université P. et M. CurieParis Cedex 05France

Personalised recommendations