Septal Neck-Siphuncular Complex of Ammonoids

  • Kazushige Tanabe
  • Neil H. Landman
Part of the Topics in Geobiology book series (TGBI, volume 13)


One of the characteristic features of virtually all of the fossil Cephalopoda is the presence of a chambered shell with a siphuncle. Among extant cephalopods, chambered shells have been completely lost or reduced, for example, to chitinous gladii. Only three genera, Nautilus, Sepia, and Spirula, preserve chambered shells in the modern fauna. Denton and Gilpin-Brown (1973) demonstrated experimentally that the chambered shells of these three genera function as hydrostatic floats to adjust the density of the living animal to that of seawater by means of low-pressure gas within the chambers. They have also suggested that this basic function of chambered shells has remained the same in a great variety of forms and over a geologically long period of time.


Nacreous Layer Fourth Whorl Septal Neck Triassic Ammonoid Primary Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Appellöf, A., 1893, Die Schalen von Sepia, Spirula und Nautilus. Studien über den Bau und das Wachstum, K. Svensk. Vetenskapsakad. Han dl. 25: 1–106.Google Scholar
  2. Bandel, K., 1981, The structure and formation of the siphuncular tube of Quenstedtoceras compared with that of Nautilus (Cephalopoda), N. Jb. Geol. Paläont. Abh. 161: 153–171.Google Scholar
  3. Bandel, K., 1982, Morphologie und Bildung der frühontogenetischen Gehäuse bei conchiferen Mollusken, Facies 7: 1–198.CrossRefGoogle Scholar
  4. Bandel, K., and Boletzky, S. v., 1979, A comparative study of the structure, development and morphological relationships of chambered cephalopod shells, Veliger 21: 313–354.Google Scholar
  5. Bayer, U., 1975, Organische Tapeten im Ammoniten-Phragmokon und ihr Einfluss auf die Fossilisation, N. Jb. Geol. Paläont. Mh. 1975 (1): 12–25.Google Scholar
  6. Birkelund, T., 1981, Ammonoid shell structure, in: The Ammonoidea, The Systematics Association Special Volume 18 ( M. R. House and J. R. Senior, eds.), Academic Press, London, pp. 177–214.Google Scholar
  7. Birkelund, T., and Hansen, H. J., 1968, Early shell growth and structures of the septa and the siphuncular tube in some Maastrichtian ammonites, Medd. Dan. Geol. Foren. 18: 71–78.Google Scholar
  8. Birkelund, T., and Hansen, H. J., 1974, Shell ultrastructures of some Maastrichitian Ammonoidea and Coleoidea and their taxonomic implications, K. Dan. Vidensk. Selsk. Biol. Skr. 20: 1–34.Google Scholar
  9. Bogoslovskaya, M. E, 1959, Internal structure of the shells of some Artinskian ammonoids, Paleont. Zh. 1959 (1): 49–57 (in Russian).Google Scholar
  10. Bogoslovsky, B. I., 1969, Devonian Ammonoidea. I. Agoniatites, Trans. Paleont. Inst. Akad. Nauk SSSR 124: 1–341 (in Russian).Google Scholar
  11. Böhmers, J. C. A., 1936, Bau und Struktur von Schale und Sipho bei permischen Ammonoidea, Dissertation, Drukkerij University, Apeldoorn.Google Scholar
  12. Branco, W., 1879–1880, Beiträge zur Entwickelungsgeschichte der fossilen Cephalopoden, Palaeontographica 26(1879):15–50; 27 (1880): 17–81.Google Scholar
  13. Denton, E. J., and Gilpin-Brown, J. B., 1966, On the buoyancy of the pearly Nautilus, J. Mar. Biol. Assoc. U.K. 46: 723–759.CrossRefGoogle Scholar
  14. Denton, E. J., and Gilpin-Brown, J. B., 1973, Floatation mechanisms in modern and fossil cephalopods, in: Advances in Marine Biology, Volume 11 ( F. S. Russell and M. Yonge, eds.), Academic Press, London, pp. 197–268.Google Scholar
  15. Doguzhaeva, L., 1988, Siphuncular tube and septal necks in ammonoid evolution. in: Cephalopods—Present and Past ( J. Wiedmann and J. Kullmann, eds.), Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp. 291–301.Google Scholar
  16. Doguzhaeva, L., and Mutvei, H., 1986, Retro-and prochoanitic, septal necks in ammonoids, and transition between them, Palaeontogr. Abt. A 195: 1–18.Google Scholar
  17. Druschits, V. V., and Doguzhaeva, L. A., 1974, Some morphogenetic characteristics of phylloceratids and lytoceratids (Ammonoidea), Paleontol. J. 8 (1): 37–48.Google Scholar
  18. Druschits, V. V., and Khiami, N., 1970, Structure of the septa, protoconch walls and initial whorls in early Cretaceous ammonites, Paleontol. J. 4 (1): 26–38.Google Scholar
  19. Druschits, V. V., Bogslovskaya, M. E, and Doguzhaeva, L. A., 1976, Evolution of septal necks in the Ammonoidea, Paleontol. J. 10 (1): 37–50.Google Scholar
  20. Erben, H. K., 1964a, Bactritoidea, in: Treatise on Invertebrate Paleontology, Part K, Mollusco 3 ( R. C. Moore, ed.), Geological Society of America and University of Kansas Press. Lawrence, KS, pp. 491–505.Google Scholar
  21. Erben, H. K., 1964b, Die Evolution der ältesten Ammonoidea. N. Jb. Geol. Paldont. Abh. 120: 107–212.Google Scholar
  22. Erben, H. K., and Reid, R. E. H., 1971, Ultrastructure of shell, origin of conellae and siphuncular membranes in an ammonite. Biomineralisation 3: 22–31.Google Scholar
  23. Erben, H. K., Flajs, G., and Siehl, A., 1969, Die frühontogenetische Entwicklung der Schalenstruktur ectocochleater Cephalopoden, Palaeontogr. Abt. A 132: 1–54.Google Scholar
  24. Glenister, B. E, and Furnish, W. M., 1981, Permian ammonoids, in: The Ammonoidea, The Systematics Association Special Volume ( M. R. House and J. R. Senior, eds.), Academic Press, London, pp. 49–64.Google Scholar
  25. Grandjean, F., 1910, Le siphon des ammonites et des belémnites, Bull. Soc. Géol. France, Ser. 4, 10: 496–519.Google Scholar
  26. Grégoire, C., 1962, On submicroscopic structure of the Nautilus shell, Bull. Inst. R. Sci. Nat. Belg. 38: 1–71.Google Scholar
  27. Grégoire, C., 1973, On the submicroscopic structure of the organic components of the siphon in the Nautilus shell, Arch. Int. Physiol. Biochim. 81: 299–316.PubMedCrossRefGoogle Scholar
  28. Grégoire, C., 1984, Remains of organic components in the siphonal tube and in the brown membrane of ammonoids and fossil nautiloids. Hydrothermal simulation of their diagenetic alterations, Akad. Wiss. Lit. Abh. Math. Naturwiss. Kl. (Mainz) 1984 (5): 1–56.Google Scholar
  29. Hasenmueller, W. A., and Hattin, D. E., 1985, Apatitic connecting rings in moulds of Baculites sp. from the middle part of the Smoky Hill Member, Niobrara Chalk (Santonian) of western Kansas, Cretaceous Res. 6: 317–330.CrossRefGoogle Scholar
  30. Henderson, R. A., 1984, A muscle attachment proposal for septal function in Mesozoic ammonites, Palaeontology 27: 461–486.Google Scholar
  31. Hewitt, R. A., and Westermann, G. E. G., 1983, Mineralogy, structure and homology of ammonoid siphuncles, N. Jb. Geol. Paldont. Abh. 165: 378–396.Google Scholar
  32. Hewitt, R. A., Checa, A., Westermann, G. E. G., and Zaborski, P. M., 1991, Chamber growth in ammonites inferred from colour markings and naturally etched surfaces of Cretaceous vascoceratids from Nigeria, Lethaia 24: 271–287.CrossRefGoogle Scholar
  33. Hewitt, R. A., Abdelsalam, U. A., Dokainish, M. A., and Westermann, G. E. G., 1993, Comparison of the relative strength of siphuncles with prochoanitic and retrochoanitic septal necks by finite-element analysis, in: The Ammonoidea: Environment, Ecology and Evolutionary Change, The Systematics Association Special Volume 47 ( M. R. House, ed.), Clarendon Press, Oxford, pp. 85–98.Google Scholar
  34. House, M. R., 1985, Correlation of mid-Palaeozoic ammonoid evolutionary events with global sedimentary pertubations, Nature 313: 17–22.CrossRefGoogle Scholar
  35. Kulicki, C., 1979, The ammonite shell: Its structure, development and biological significance, Palaeont. Pol. 39: 97–142.Google Scholar
  36. Kulicki, C., and Mutvei, H., 1982, Ultrastructure of the siphonal tube in Quenstedtoceras (Ammonitina), Stockholm Contrib. Geol. 37: 129–138.Google Scholar
  37. Kullmann, J., 1981, Carboniferous Goniatites, in: The Ammonoidea, The Systematics Association Special Volume 18 ( M. R. House and J. R. Senior, eds.), Academic Press, London, pp. 37–48.Google Scholar
  38. Landman, N. H., 1982, Embryonic shells of Baculites. J. Paleontol. 56: 1235–1241.Google Scholar
  39. Landman, N. H., 1987, Ontogeny of Upper Cretaceous (Turonian—Santonian) sacphitid ammonites from the Western Interior of North America: Systematics, developmental patterns, and life history, Bull. Am. Mus. Nat. Hist. 185 (2): 117–241.Google Scholar
  40. Landman, N. H., Tanabe, K., Mapes, R. H., Klofak, S. M., and Whitehill, J., 1993, Pseudosutures in Paleozoic ammonoids, Lethaia 26: 99–100.CrossRefGoogle Scholar
  41. Lominadzé, T. A., Sharikadzé, M. Z., and Kvantaliani, I. V., 1993. On mechanism of soft body movement within body chamber in ammonites, Geobios Mém. Spéc. 15: 267–273.CrossRefGoogle Scholar
  42. Mapes, R. H., 1979, Carboniferous and Permian Bactritoidea (Cephalopoda) in North America, Univ. Kans. Paleontol. Contrib. Artic. 64: 1–75.Google Scholar
  43. Miller, A. K., and Unklesbay, A. G., 1943, The siphuncle of Late Paleozoic ammonoids, J. Paleont. 17: 1–25.Google Scholar
  44. Miller, A. K., Furnish, W. M., and Schindewolf, O. H., 1957, Paleozoic Ammonoidea, in: Treatise on Invertebrate Paleontology, Part L, Mollusca 4 ( R. C. Moore, ed.), Geological Society of America and University of Kansas Press, Lawrence, KS, pp. 11–79.Google Scholar
  45. Mutvei, H., 1967, On the microscopic shell structure in some Jurassic ammonoids, N. Jb. Geol. Paläont. Abh. 129: 157–166.Google Scholar
  46. Mutvei, H., and Reyment, R. A., 1973, Buoyancy control and siphuncle function in ammonoids, Palaeontology 16: 623–636.Google Scholar
  47. Naef, A., 1922, Die Fossilen Tintenfische, Gustav Fischer, Jena.Google Scholar
  48. Obata, I., Tanabe, K., and Fukuda, Y., 1980, The ammonite siphuncular wall: Its microstructure and functional significance, Bull. Natl. Sci. Mus. (Tokyo), Ser. C 6: 59–72.Google Scholar
  49. Ohtsuka, Y., 1986, Early internal shell microstructure of some Mesozoic Ammonoidea: Implications for higher taxonomy, Trans. Proc. Palaeont. Soc. Jpn. New Ser. 141: 275–288.Google Scholar
  50. Schindewolf, O. H., 1935, Zur Stammesgeschichte der Cephalopoden, Jb. Preuss. Geol. Landesanst. 55: 258–283.Google Scholar
  51. Schindewolf, O. H., 1950, Grundfragen der Paläontologie, Schweizerbart’sche Verlagsbuchhandlung, Stuttgart.Google Scholar
  52. Schindewolf, O. H., 1968, Analyse eines Ammoniten-Gehäuses, Akad. Wiss. Lit. Abh. Math. Naturwiss. Kl. (Mainz) 8: 139–188.Google Scholar
  53. Schoulga-Nesterenko, M., 1926, Nouvelles données sur l’organisation intérieure des conques des ammonites de l’étage d’Artinsk, Bull. Soc. Nat. Moscou Sec. Géol. 4 (1–2): 81–100.Google Scholar
  54. Seilacher, A., and Chinzei, K., 1993, Remote biomineralization II: Fill skeletons controlling buoyancy in shelled cephalopods, N. Jb. Geol. Paläont. Abh. 190: 363–373.Google Scholar
  55. Spath, L. F., 1933, The evolution of the Cephalopoda, Biol. Rev. 8: 418–462.CrossRefGoogle Scholar
  56. Tanabe, K., Obata, I., Fukuda, Y., and Futakami, M., 1979, Early shell growth in some Upper Cretaceous ammonites and its implications to major taxonomy, Bull. Nat. Sci. Mus. (Tokyo). Ser. C 5: 153–176.Google Scholar
  57. Tanabe, K., Fukuda, Y., and Obata, I., 1982, Formation and function of the siphuncle—septal neck structures in two Mesozoic ammonites, Trans. Proc. Palaeont. Soc. Jpn. New Ser. 128: 433–443.Google Scholar
  58. Tanabe, K., Landman, N. H., and Weitschat, W., 1993, Septal necks in Mesozoic Ammonoidea: Structure, ontogenetic development and evolution, in: The Ammonoidea: Environment, Ecology and Evolutionary Change, The Systematics Association Special Volume 47 ( M. R. House, ed.), Clarendon Press, Oxford, pp. 57–84.Google Scholar
  59. Tozer, E. T., 1981, Triassic Ammonoidea: Classification, evolution and relationship with Permian and Jurassic forms, in: The Ammonoidea, The Systematics Association Special Volume 18 ( M. R. House and J. R. Senior, eds.), Academic Press, London, pp. 66–100.Google Scholar
  60. Ward, P. D., and Chamberlain, J. A., Jr., 1983, Radiographic observation of chamber formation in Nautilus pompilius, Nature 304: 57–59.CrossRefGoogle Scholar
  61. Ward, P. D., Greenwald, L., and Magnier, Y., 1981, The chamber formation cycle in Nautilus macromphalus, Paleobiology 7: 481–493.Google Scholar
  62. Weitschat, W., and Bandel, K., 1991, Organic components in phragmocones of Boreal Triassic ammonoids: Implications for ammonoid biology, Paleontol. Z. 65: 269–303.Google Scholar
  63. Westermann, G. E. G., 1982, The connecting rings of Nautilus and Mesozoic ammonoids: Implications for ammonoid bathymetry, Lethaia 15: 373–384.CrossRefGoogle Scholar
  64. Zaborski, P. M. P., 1986, Internal mould markings in a Cretaceous ammonite from Nigeria, Palaeontology 29: 725–738.Google Scholar
  65. Zakharov, Yu. D., 1971, Some features of the development of the hydrostatic apparatus in early Mesozoic ammonoids, Paleontol. J. 5 (1): 24–33.Google Scholar
  66. Zakharov, Yu. D., 1974, New data on internal shell structure in Carboniferous, Triassic and Cretaceous ammonoids, Paleontol. J. 8 (1): 25–36.Google Scholar
  67. Zakharov, Yu. D., 1989, New data on biomineralization of the Ammonoidea, in: Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends, Short Course in Geology, Vol. 5, Part II ( J. G. Carter, ed.), American Geophysical Union, Washington, DC, p. 325.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Kazushige Tanabe
    • 1
  • Neil H. Landman
    • 2
  1. 1.Geological InstituteUniversity of TokyoTokyo 113Japan
  2. 2.Department of InvertebratesAmerican Museum of Natural HistoryNew YorkUSA

Personalised recommendations