Skip to main content

Ammonoid Extinction

  • Chapter

Part of the Topics in Geobiology book series (TGBI,volume 13)

Abstract

With a range of over 300 million years, the ammonoids represent one of the most successful groups of organisms in all of earth history. Their very success. however, makes the nature of their demise especially curious. In this short review I examine questions pertaining to extinction in ammonoids.

Keywords

  • Shell Shape
  • Anoxic Event
  • Shell Breakage
  • Cretaceous Ammonite
  • Evolutionary Tempo

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4757-9153-2_20
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   259.00
Price excludes VAT (USA)
  • ISBN: 978-1-4757-9153-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   329.99
Price excludes VAT (USA)
Hardcover Book
USD   329.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Becker, R. T., 1993, Anoxia, eustatic changes, and Upper Devonian to lowermost Carboniferous global ammonoid diversity, in: The Ammonoidea: Environment, Ecology and Evolutionary Change, Systematics Association Spec. Vol. 47 ( M. R. House, ed.), Clarendon Press, Oxford, pp. 115–164.

    Google Scholar 

  • Carlson, B., McKibben, J., and de Gruy, M., 1984, Telemetric investigation of vertical migration of Nautilus in Palau, Pac. Sci. 38: 183–188.

    Google Scholar 

  • Collom, C., 1986, Extinction rates in Cretaceous ammonites, in: Global Bio-Events (O. H. Walliser, ed.), Lect. Notes Earth Sci. 8: 249–258.

    Google Scholar 

  • Denton, E., and Gilpin-Brown, J., 1966, On the buoyancy of the pearly Nautilus, J. Mar. Biol. Assn. U.K. 46: 723–759.

    CrossRef  Google Scholar 

  • Dzik, J., 1984, Phylogeny of the Nautiloidea, Acta Palaeontol. Pol. 45: 1–219.

    Google Scholar 

  • Ebel, K., 1985, Gehäusespirale und Septenformen bei Ammoniten unter Annahme vagil benthsicher Lebensweise, PaMont. Z. 59: 109–123.

    Google Scholar 

  • Ebel, K., 1992, Mode of life and soft body shape of heteromorph ammonites, Lethaia 25: 179–193.

    CrossRef  Google Scholar 

  • Hallam, A., 1987, End Cretaceous mass extinction event; argument for terrestrial causation, Science 238: 1237–1242.

    CrossRef  PubMed  CAS  Google Scholar 

  • House, M. R., 1993, Fluctuations in ammonoid evolution and possible environmental controls, in: The Ammonoidea: Environment, Ecology and Evolutionary Change, Systematics Association Spec. Vol. 47 ( M. House, ed.), Clarendon Press, Oxford. pp. 13–34.

    Google Scholar 

  • Jacobs, D., and Landman, N., 1993, Nautilus—a poor model for the function and behavior of ammonoids? Lethaia 26: 101–111.

    Google Scholar 

  • Kaiho, K., 1994, Planktonic and benthic foraminiferal extinction events during the last 100 m.y., Palaeogeogr. Palaeoclimatol. Palaeoecol. 111: 45–71.

    CrossRef  Google Scholar 

  • Keller, G., 1994, Effects of the KT boundary event: Mass extinction restricted to low latitudes, L.P.I. Contrib. 825: 57–58.

    Google Scholar 

  • Kennedy. W., 1993. Ammonite faunas of the European Maastrichtian; diversity and extinction, in: The Ammonoidea: Environment, Ecology and Evolutionary Change. Systematics Association Spec. Vol. 47 ( M. R. House, ed.), Clarendon Press, Oxford, pp. 285–326.

    Google Scholar 

  • Landman, N., 1984, Not to be or to be? Nat. Hist. 93: 34–41.

    Google Scholar 

  • Marshall, C.. 1995, Distinguishing between sudden and gradual extinctions in the fossil record: Predicting the position of the Cretaceous-Tertiary iridium anomaly using the ammonite fossil record on Seymour Island. Antarctica, Geology 23 (8): 731–734.

    CrossRef  Google Scholar 

  • Packard, A., 1972, Cephalopods and fish, the limits of convergence. Biol. Rev. 47: 241–307.

    CrossRef  CAS  Google Scholar 

  • Raup, D., 1967, Geometric analysis of shell coiling: Coiling in ammonoids, J. Paleontol. 41: 43–65.

    Google Scholar 

  • Sharpton, V., Marin, L., and Schuraytz. B., 1994. The Chicxulub multiring basin: Evaluation of geophysical data, well logs, and drill core samples, L.P.I. Contrib. 825: 108–110.

    Google Scholar 

  • Signor, P., 1985, Real and apparent trends in species richness through time, in: Phanerozoic DiversityPatterns (J. Valentine, ed.), Princeton University Press. Princeton, pp. 129–141.

    Google Scholar 

  • Teichert, C., 1985, Crises in cephalopod evolution, in: Mollusks—Notes for a short course. (D. Bottler. C. Hickman, and P. Ward, eds.), Univ. Tenn. Dept. Geol. Sci. Stud. Geol. 13: 202–214.

    Google Scholar 

  • Vermeij, G., 1977, The Mesozoic marine revolution: Evidence from snails, predators, and grazers. Paleobiology 3: 245–258.

    Google Scholar 

  • Ward, P., 1980, Comparative shell shape distributions in Jurassic–Cretaceous ammonites and Jurassic–Tertiary nautilids, Paleobiology 6 (1): 32–43.

    Google Scholar 

  • Ward, P., 1981, Shell sculpture as a defensive adaptation in ammonoids. Paleobiology 7 (1): 96–100.

    Google Scholar 

  • Ward, P., 1983, The extinction of the ammonites, Sci. Am. 249: 136–147.

    CrossRef  Google Scholar 

  • Ward, P., 1986a, Rates and processes of compensatory buoyancy change in Nautilus macromphal us, Veliger 28: 356–368.

    Google Scholar 

  • Ward, P., 1986b, Cretaceous ammonite shell shapes, Malacologia 27: 3–28.

    Google Scholar 

  • Ward, P., 1987, The Natural History of Nautilus, Allen and Unwin, London.

    Google Scholar 

  • Ward, P., 1990, A review of Maastrichtian ammonite ranges, Geol. Soc. Am. Spec. Pap. 247: 519–530.

    CrossRef  Google Scholar 

  • Ward, P., Carlson, B., Weekly, M., and Brumbaugh, B., 1984, Remote telemetry of daily vertical and horizontal movement in Nautilus. Nature 309 (5965): 248–250.

    CrossRef  Google Scholar 

  • Westermann, G. E., 1990, New developments in ecology of Jurassic–Cretaceous ammonoids, in: Atti del Secondo Convegno Internazionale, Fossili, Evoluzione, Ambiente, Pergola, 1987 ( G. Pallini, F. Cecca, S. Cresta, and M. Santantonio, eds.), Tectnostampa, Ostra Vetere, Italy, pp. 459–478.

    Google Scholar 

  • Wiedmann, J., 1986, Macro-invertebrates and the Cretaceous–Tertiary boundary, in: Global Bio–Events (O. H. Walliser, ed.), Lect. Notes Earth Sci. 8: 397–409.

    Google Scholar 

  • Zinsmeister, W., and Feldmann, R., 1994, Antarctica, the forgotten stepchild: A view from the high southern latitudes, L.P.I. Contrib. 825: 134–135.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ward, P. (1996). Ammonoid Extinction. In: Landman, N.H., Tanabe, K., Davis, R.A. (eds) Ammonoid Paleobiology. Topics in Geobiology, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9153-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9153-2_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9155-6

  • Online ISBN: 978-1-4757-9153-2

  • eBook Packages: Springer Book Archive