Advertisement

Ammonoid Life and Habitat

  • Gerd E. G. Westermann
Part of the Topics in Geobiology book series (TGBI, volume 13)

Abstract

Since the last review of Jurassic—Cretaceous ammonoid ecology (Westermann, 1990), much additional work has been done on ammonoid autecology (architecture or macrostructure) as well as on the associations and occurrences of ammonoids in the field (synecology). Important works on Paleozoic through Triassic ammonoids, dispersed in the literature, have not been reviewed previously. Quantitative autecological studies, begun in the mid-1980s, concerned buoyancy and orientation. Electron and light microscopic studies of the shells have also contributed to an understanding of the soft parts. Research on shell fabrication, strength, and hydrodynamics has increased greatly, also contributing to ammonoid autecology. Intraspecific morphological variation has been studied intensively but remains poorly understood ecologically; most authors still fail to consider variation in the functional interpretation of shell shape. Ammonoid synecology was significantly advanced in recent years by the renewed interest in Paleozoic and Mesozoic dysoxic black-shale facies and their relation to eustasy and orbitally enforced cycles. Other recent studies in synecology have emphasized the interrelations among sediment, eustasy, and biofacies. Finally, ammonoid taxonomy has been summarized in The Ammonoidea (Special Volume 18, The Systematics Association, 1981).

Keywords

Black Shale Body Chamber Buccal Mass Habitat Depth Permian Ammonoid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aimeras, Y., and Elmi, S., 1982, Fluctuations des peuplements d’ammonites et de brachiopods en liaison avec les variations bathymetriques pendant le Jurassique Inférieur et Moyen en Mediterranée occidentale, Bol. Soc. Paleont. Ital. 21: 169–188.Google Scholar
  2. Bardhan, S., Jana, S. K., and Datta, K., 1993, Preserved color patterns of phylloceratid ammonoid from the Jurassic Chari Formation, Kutch, India, and its functional significance, J. Paleontol. 67: 140–143.Google Scholar
  3. Barthel, K. W., Swinburne, N. H. M., and Conway Morris, S., 1990, Solnhofen: A Study in Mesozoic Palaeontology, Cambridge University Press, Cambridge.Google Scholar
  4. Batt, R. J., 1989, Ammonite shell morphotype distribution in the Western Interior Greenhorn sea and some paleoecological implication, Palaios 4: 32–42.CrossRefGoogle Scholar
  5. Batt, R. J., 1991, Sutural amplitude of ammonite shells as a paleoenvironmental indicator, Lethaia 24: 219–225.CrossRefGoogle Scholar
  6. Batt, R. J., 1993, Ammonite shell morphotypes as indicators of oxygenation in ancient epicontinental seas: Example from Late Cretaceous Greenhorn Cyclothem (U.S.A.), Lethaia 26: 49–64.CrossRefGoogle Scholar
  7. Bayer, U., 1970, Anomalies in Aalenian and Bajocian ammonites as clues to their mode of life, N. Jb. Geol. Paläont. Abh. 135: 19–41.Google Scholar
  8. Bayer, U., 1977, Cephalopod septa I. Constructional morphology of the ammonite septum, N. Jb. Geol. Paläont. Abh. 154: 290–366.Google Scholar
  9. Bayer, U., 1982, Ammonite maneuverability—a new look at the functions of shell geometry, N. Jb. Geol. Paläont. Abh. 164: 154–156.Google Scholar
  10. Bayer, U., and McGhee, G., 1984, Iterative evolution of Middle Jurassic ammonite faunas, Lethaia 17: 43–51.CrossRefGoogle Scholar
  11. Becker, R. T., 1993, Anoxia, eustatic changes, and Upper Devonian to lowermost Carboniferous global ammonoid diversity, in: The Ammonoidea: Environment, Ecology and Evolutionary Change, Systematics Association Spec. Vol. 47 ( M. R. House, ed.), Clarendon Press, Oxford, pp. 115–164.Google Scholar
  12. Birkelund, T., 1981, Ammonoid shell structure, in: The Ammonoidea, Systematics Association Spec. Vol. 18 ( M. R. House and J. Senior, eds.), Academic Press, London, pp. 177–214.Google Scholar
  13. Birkelund, T., and Callomon, J. H., 1985, The Kimmeridgian ammonite faunas of Milne Land, central East Greenland, Bull. Gran]. Geol. Unders. 153: 1–56.Google Scholar
  14. Boardman, D. R. II, Mapes, R. H., Yancey, T. E., and Malinky, J. M., 1984, A new model for the depth-related allogenic community succession with North American Pennsylvanian cyclothems and implications on the black shale problem, Tulsa Geol. Soc. Spec. Pubi. 2: 141–182.Google Scholar
  15. Boletzky, S. v., 1974, The “larvae” of Cephalopoda: A review, Thalassia Jugosl. 10: 45–76.Google Scholar
  16. Boletzky, S. v., 1987, Juvenile behaviour, in: Cephalopod Life Cycles, Vol. II ( P. R. Boyle, ed.), Academic Press, London, pp. 45–60.Google Scholar
  17. Boletzky, S. v., 1992, Evolutionary aspects of development, life style, and reproductive mode in incirrate octopods (Mollusca, Cephalopoda), Rev. Suisse Zool. 99: 755–770.Google Scholar
  18. Bond, P. N., and Saunders, W. B., 1989, Sublethal shell repair in Upper Mississippian ammonoids, Paleobiology 15: 414–428.Google Scholar
  19. Boston, W. B., and Mapes, R. H., 1991, Ectocochleate cephalopod taphonomy, in: Processes of Fossilization (S. K. Donovan, ed.), Bellhaven Press, London, pp. 220–240.Google Scholar
  20. Boucot, A. J., 1981, Principles of Benthic Marine Paleoecology, Academic Press, New York.Google Scholar
  21. Bourrouilh, R., 1981, “Orthoceratitico—Rosso” et “Goniatitico—Rosso” facies marqueurs de la naissance et de l’évolution-de paleomarges au Paléozoique, in: Rosso Ammonitico Symposium Proceedings (A. Farinacci and S Elmi, eds.), Tecnoscienza, Roma, pp. 39–58.Google Scholar
  22. Boyajian, G., and Lutz, T., 1992, Evolution of biological complexity and its relation to taxonomic longevity in the Ammonoidea, Geology 20: 983–986.CrossRefGoogle Scholar
  23. Brand, E., and Jordan, R., 1990, Zur Paläogeographie des Ober-Bathonium (Dogger) im nordwestdeutschen Becke und neue Ergebnisse fiir den Raum Hildesheim, in: Zum Ober-Bathonium (Mittlerer Jura) im Raum Hildesheim, Nordwestdeutschland (R. Jordan, ed.), Geol. Jahrb. A 121: 9–20.Google Scholar
  24. Brett, C. E., Miller, K. B., and Baird, G. C., 1990, A temporal hierarchy of paleoecologic processes within a Middle Devonian epeiric sea, in: Paleocommunity Temporal Dynamics: The Longterm Development of Multispecies Assemblages (W. Miller, ed.). Paleontol. Soc. Spec. Publ. 5: 178–203.Google Scholar
  25. Brett, C. E., Dick, V. B., and Baird, G. C., 1991, Comparative taphonomy and paleoecology of Middle Devonian dark gray and black shale fades from western New York, in: Dynamic Stratigraphy and Depositional Environments of the Hamilton Group (Middle Devonian) in New York State, Part II ( E. Landing and C. E. Brett, eds.), The State Education Department, Albany, NY.Google Scholar
  26. Brett, C. E., Boucot, A. J., and Jones, B., 1993, Absolute depths of Silurian benthic assemblages, Lethaia 26: 25–40.CrossRefGoogle Scholar
  27. Brumsack, HJ., 1991, Inorganic geochemistry of the German ‘Posidonia Shale’: Palaeoenvironmental consequences, in: Modern and Ancient Continental Shelf Anoxia (R. V. Tyson and T. H. Pearson, eds.), Geol. Soc. Spec. Publ. 58: 353–362.Google Scholar
  28. Bruna, G. D., and Martire, L., 1985, La successione giurassica (Pliensbachiano-Kimmeridgiano) delle Alpi Feltrine (Belluno), Riv. Ital. Paleontol. Stratigr. 91: 15–62.Google Scholar
  29. Bulot, L. G., 1993, Stratigraphic implications of the relationship between ammonites and facies: Examples taken from the Lower Cretaceous (Valanginian-Hauterivian) of the western Tethys, in: The Ammonoidea: Environment, Ecology and Evolutionary Change, Systematics Association Spec. Vol. 47 ( M. R. House, ed.), Clarendon Press, Oxford, pp. 243–266.Google Scholar
  30. Callomon, J. H., 1981, Dimorphism in ammonoids, in: The Ammonoidea, Systematics Association Spec. Vol. 18 ( M. R. House and J. R. Senior, eds.), Academic Press, London, pp. 257–273.Google Scholar
  31. Callomon, J. H., 1985, The evolution of the Jurassic ammonite family Cardioceratidae, Spec. Pap. Palaeontol. 33: 49–90.Google Scholar
  32. Calver, M. A., 1968, Distribution of Westfalian marine faunas in northern England and adjoining areas, Yorkshire Geol. Soc. Proc. 37: 1–72.CrossRefGoogle Scholar
  33. Cecca, F., 1992, Ammonite habitats in the Early Tithonian of Western Tethys, Lethaia 25: 257–267.CrossRefGoogle Scholar
  34. Chamberlain, J. A., Jr., 1991, Cephalopod locomotor design and evolution: The constraints of jet propulsion, in: Biomechanics and Evolution ( J. M. V. Rayner and R. J. Wooton, eds.), Cambridge University Press, Cambridge, pp. 57–98.Google Scholar
  35. Chamberlain, J. A., Jr., Ward, P. D., and Weaver, J. S., 1981, Postmortem ascent of Nautilus shells: Implications for cephalopod paleogeography, Paleobiology 7: 494–509.Google Scholar
  36. Checa, A., and Westermann, G. E. G., 1989, Segmental growth in planulate ammonites: Inferences on costae function, Lethaia 22: 95–100.CrossRefGoogle Scholar
  37. Clarim, P. A., Marini, P., Pastorini, M., and Pavia, G., 1984, Il rosso ammonitico inferiore (Baiociano–Calloviano) nei Monti Lessini settentrionali (Verona), Riv. Ital. Paleontol. Stratigr. 90: 15–86.Google Scholar
  38. Conti, M. A., and Fischer, J. C., 1981, Preliminary notes on Aalenian gastropods of Case Canepini (Umbria, Italy), in: Rosso Ammonitico Symposium Proceedings ( A. Farrinacci and S. Elmi, eds.), Tecnoscienza, Rome, pp. 136–167.Google Scholar
  39. Cope, J. C. W., 1967, The palaeontology and stratigraphy of the lower part of the Upper Kimmeridge Clay of Dorset, Bull. Br. Mus. (Nat. Hist.) Geol. 15 (1): 1–79.Google Scholar
  40. Cope, J. C. W., 1974, Upper Kimmeridge ammonite faunas of Wash area and a subzonal scheme from the lower part of the Upper Kimmeridgian, Bull. Geol. Surv. G.B. 974: 29–37.Google Scholar
  41. Dagys, A. S., and Weitschat, W., 1993, Extensive intraspecific variation in a Triassic ammonoid from Siberia, Lethaia 26: 113–122.CrossRefGoogle Scholar
  42. Davis, R. A., 1972, Mature modification and dimorphism in selected Late Paleozoic ammonoids, Bull. Am. Paleontol. 62 (272): 26–130.Google Scholar
  43. Davis, R. A., Furnish, W. M., and Glenister, B. F., 1969, Mature modification and dimorphism in Late Paleozoic ammonoids, in: Sexual Dimorphism in Fossil Metazoa and Taxonomic Implications ( G. E. G. Westermann, ed.), Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp. 101–110.Google Scholar
  44. Delanoy, G., Magnin, A., Selebran, M., and Selebran, J., 1991, Moutoniceras nodosum d’Orbigny, 1850 (Ammonoidea. Ancyloceratina) une très grande ammonite heteromorphe du Barremien inférieur, Rev. Paleobiol. 10: 229–245.Google Scholar
  45. Diets, G., 1973. Middle Jurassic (Dogger) heteromorph ammonites, in: Atlas of Palaeobiogeography ( A. Hallam, ed.), Elsevier, Amsterdam, pp. 283–285.Google Scholar
  46. Dietl, G., 1978, Die heteromorphen Ammoniten des Dogger (Stratigraphie, Taxonomie, Phylogenie, Okologie), Stuttg. Beitr. Naturkd. B 33: 1–97.Google Scholar
  47. Doguzhaeva, L. A., 1988. Siphuncular tubes and septal necks in ammonite evolution, in: Cephalopods-Present and Past ( J. Wiedmann and J. Kullmann, eds.), Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp. 291–302.Google Scholar
  48. Doguzhaeva, L. A., and Mutvei, H., 1989, Ptychoceras—a heteromorphic lytoceratid with truncated shell and modified ultrastructure (Mollusca: Ammonoidea), Palaeontogr. A 208: 91–121.Google Scholar
  49. Doguzhaeva, L. A., and Mutvei, H., 1991, Organization of the soft body in Aconeceras (Ammonitina), interpreted on the basis of shell morphology and muscle scars, Palaeontogr. 218: 17–33.Google Scholar
  50. Doguzhaeva. L. A., and Mutvei, H., 1992, Radula of the Early Cretaceous ammonite Aconeceras (Mollusca: Cephalopoda), Palaeontogr. A223: 167–177.Google Scholar
  51. Doguzhaeva, L. A., and Mutvei, H., 1993, Structural features in Cretaceous ammonoids indicative of semiinternal or internal shells, in: The Ammonoidea: Environment, Ecology and Evolutionary Change, Systematics Association Spec. Vol. 47 ( M. R. House, ed.), Clarendon Press, Oxford, pp. 99–114.Google Scholar
  52. Dommergues, J. L., Cariou, E., Contini, D., Hantzpergue, P., Marchand, D., Meister, C., and Thierry, J., 1989, Homeomorphies et canalisations evolutives: Le rôle de l’ontogenese. Quelques exemples pris chez les ammonites du Jurassic, Geobios 22: 5–48.CrossRefGoogle Scholar
  53. Doyle, P., and Whitham, A. G., 1991, Palaeoenvironments of the Nordenskjold Formation: An Antarctic Late Jurassic–Early Cretaceous black shale-tuff sequence, in: Modern and Ancient Continental Shelf Anoxia (R. V. Tyson and T. H. Pearson, eds.), Geol. Soc. Spec. Publ. 58: 397–414.Google Scholar
  54. Duff, K. L.,1975, Palaeoecology of abituminous shale—the Lower Oxford Clay of central England, Palaeontology 18: 443–482.Google Scholar
  55. Ebel, K., 1983, Calculations on the buoyancy of ammonites, N. Jb. Geol. Paläont. Mh. 1983: 614–640.Google Scholar
  56. Ebel, K., 1985, Gehausespirale und Septenformen bei Ammoniten unter Annahme vagil benthischer Lebensweise, Paläontol. Z. 59: 109–123.Google Scholar
  57. Ebel, K., 1992, Mode of life and soft body shape of heteromorph ammonites, Lethaia 25: 179–193.CrossRefGoogle Scholar
  58. Elmi, S., 1985, Influences des hauts-fonds sur la composition des peuplements et sur la dispersion des ammonites, in: La géodynamique des seuils et des hauts-fonds, Bull. Sect. Scien. Geol. 9: 217–228.Google Scholar
  59. Elmi, S., 1993, Area-rule, boundary layer and functional morphology of cephalopod shells (Ammonoids), Geobios Mém. Spéc. 15: 121–138.CrossRefGoogle Scholar
  60. Elmi, S., and Aimeras, Y., 1984, Physiography, paleotectonics and paleoenvironment as control of changes in ammonite and brachiopod communities (an example from the Early and Middle Jurassic of western Algeria), Pelaeogeogr. Palaeoclimatol. Palaeoecol. 47: 347–360.CrossRefGoogle Scholar
  61. Elmi, S., and Benshili, K., 1987, Relations entre la structuration tectonique, la composition des peuplements et l’évolution; exemple du Toarcian du Moyen-Atlas meridional (Maroc), Boll. Soc. Paleontol. Ital. 26: 47–62.Google Scholar
  62. Ford, R. D., 1965, The palaeoecology of the goniatite bed at Cowlow Nick, Castleton, Derbyshire, Palaeontology 8: 186–191.Google Scholar
  63. Fourcade, E., Azema, J., Cecca, F., Bonneau, M., Peybernes, B., and Dercourt, J., 1991, Essai de réconstitution cartographique de la paléongéographie et des paléoenvironnements de la Téthys au Tithonique supérieur (138 à 135 Ma), Bull. Soc. Géol. Fr. 162: 1197–1208.Google Scholar
  64. Frye, C. J., and Feldman, R. M., 1991, North American Late Devonian cephalopod aptychi, Kirtlandia 49: 49–71.Google Scholar
  65. Galacz, A., and Horwath, E, 1985, Sedimentary and structural evolution of the Bakony Mountains (Transdanubian Central Range, Hungary): Paleogeographic implications, Acta Geol. Hung. 28: 85–100.Google Scholar
  66. Gasiorowski, S. M., 1962, Aptychi from the Dogger, Malm and Neocomian in the western Carpathians and their stratigraphic value, Stud. Geol. Pol. 117–165.Google Scholar
  67. Geczy, B., 1982, The Davoi Zone in the Bakony Mountains, Hungary, Ann. Univ. Sci. Budap. Sect. Geol. 21: 1–11.Google Scholar
  68. Geczy, B., 1984, Provincialism of Jurassic ammonites; examples from Hungarian faunas, Acta Geol. Hung. 27: 379–389.Google Scholar
  69. Geraghty, M., and Westermann, G. E. G., 1994, Composition and origin of Jurassic ammonite concretions from Alfeld, Germany: A biogenic alternative, Palëontol. Z. 68: 473–490.Google Scholar
  70. Geyssant, J. R., 1988, Diversity in mode and tempo of evolution within one Tithonian ammonite family, the Simoceratids, in: Cephalopods—Present and Past ( J. Wiedmann and J Kullmann, eds.), Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp. 79–88.Google Scholar
  71. Glenister, B. E, and Furnish, W. M., 1981, Permian ammonoids, in: The Ammonoidea, Systematics Association Spec. Vol. 18 ( M. R. House and J. R. Senior, eds.), Academic Press, London, pp. 49–64.Google Scholar
  72. Goldring, R., 1978, Devonian, in: The Ecology of Fossils (W. S. McKerrow, ed.), Duckworth, London, pp. 125–145.Google Scholar
  73. Gygi, R. A., 1986, Eustatic sea level changes of the Oxfordian (Late Jurassic) and their effect documented in sediments and fossil assemblages of an epicontinental sea, Eclogae Geol. Helv. 79: 455–491.Google Scholar
  74. Gygi, R. A., Sadati, S.–M., and Zeiss, A., 1979, Neue Funde von Paraspidoceras (Ammonoidea) aus dem Oberen Jura von Mitteleurope—Taxonomie, Ökologie, Stratigraphie, Eclogae Geol. Helv. 72: 897–952.Google Scholar
  75. Hahn, W., Westermann, G. E. G., and Jordan, R., 1990, Ammonite Fauna of the Upper Bathonian hodsoni Zone (Middle Jurassic) at Lechstedt near Hildesheim, Northwest Germany, in: Zum Ober–Bathonium (Mittlerer Jura) im Raum Hildesheim, Nord westdeutschland (R. Jordan, ed.), Geol. Jahrb. A, 121: 21–64.Google Scholar
  76. Hallam, A., 1987, Radiations and extinctions in relation to environmental change in the marine Lower Jurassic of northwest Europe, Paleobiology 13: 152–168.Google Scholar
  77. Heckel, P. H., 1991, Thin widespread Pennsylvanian black shales of Midcontinent North America: A record of a cyclic succession of widespread pycnoclines in a fluctuating epeiric sea, in: Modern and Ancient Continental Shelf Anoxia (R. V. Tyson and T. H. Pearson, eds.), Geol. Soc. Spec. Publ. 58: pp. 259–273.Google Scholar
  78. Hengsbach, R., 1978, Bemerkungen über das Schwimmvermogen der Ammoniten und die Funktion der Septen, Sitzungsber. Ges. Naturforsch. Freunde Berlin, N.F., 18: 105–117.Google Scholar
  79. Hewitt, R. A., 1988, Significance of early septal ontogeny in ammonoids and other ectocochliates, in: Cephalopods—Present and Past ( J. Wiedmann and J. Kullmann, eds.), Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp. 201–214.Google Scholar
  80. Hewitt, R. A., 1993, Relation of shell strength to evolution, in: The Ammonoidea: Environment, Ecology and Evolutionary Change, Systematics Association Spec. Vol. 47 ( M.R. House, ed.), Clarendon Press, Oxford, pp. 35–56.Google Scholar
  81. Hewitt, R. A., and Watkins, P., 1980, Cephalopod ecology across a late Silurian shelf tract, N. lb. Geol. Paläont. Abh. 160: 96–117.Google Scholar
  82. Hewitt, R. A., and Westermann, G. E. G., 1987, Functions of complexly fluted septa in ammonoid shells. II. Septal evolution and conclusions, N. Jb. Geol. Paläont. Abh. 174: 135–169.Google Scholar
  83. Hewitt, R. A., and Westermann, G. E. G., 1990a, Nautilus shell strength variance as an indicator of habitat depth limits, N. Jb. Geol. Paläont. Abh. 179: 73–97.Google Scholar
  84. Hewitt, R. A., and Westermann, G. E. G., 1990b, Mosasaur tooth marks on the ammonite Placenticeras from the Upper Cretaceous Bearpaw Formation of Alberta, Can. J. Earth Sci. 27: 469–472.CrossRefGoogle Scholar
  85. Hewitt, R. A., Westermann, G. E. G., Checa, A., and Zaborski, P. M., 1994, Growth rates of ammonoids estimated from aptychi, Geobios Mém. Spéc. 15: 203–208.Google Scholar
  86. Hirano, H., 1986, Cenomanian and Turonian biostratigraphy of the off-shore facies of the Northern Pacific—an example of the Oyubari area, central Hokkaido, Japan, Bull. Sci. Eng. Res. Lab. Waseda Univ. 113: 6–20.Google Scholar
  87. Hirano, H., 1993, Phyletic evolution of desmoceratine ammonoids through the CenomanianTuronian oceanic anoxic event, in: The Ammonoidea: Environment, Ecology and Evolutionary Change, Systematics Association Spec. Vol. 47 ( M. R. House, ed.), Clarendon Press. Oxford, pp. 267–283.Google Scholar
  88. Hirano, H., Okamoto, T., and Hattori, K., 1990, Evolution of some Late Cretaceous desmoceratine ammonoids, Trans. Proc. Palaeont. Soc. Jpn. N.S. 157: 382–411.Google Scholar
  89. Hoffmann, K., 1982, Die Stratigraphie, Palaeogeographie und Ammonitenfauna des UnterPliensbachium (Carixium, Lias gamma) in Nordwest-Deutschland, Geol. Jahrb. A 551: 442.Google Scholar
  90. House, M. R., 1975, Faunas and time in the marine environment, Yorkshire Geol. Soc. Proc. 40 (27): 45–90.Google Scholar
  91. House, M. R., 1981, On the origin, classification and evolution of the early Ammonoidea, in: The Ammonoidea, Systematics Association Spec. Vol. 18 ( M. R. House and J. R. Senior, eds.), Academic Press, London, pp. 3–36.Google Scholar
  92. House, M. R., 1985, A new approach to an absolute time scale from measurements of orbital cycles and sedimentary microrhythms, Nature 316: 721–725.CrossRefGoogle Scholar
  93. House, M. R., 1992, Fluctuations in ammonoid evolution and possible environmental causes, in: The Ammonoidea: Environment, Ecology and Evolutionary Change, Systematics Association Spec. Vol. 47 ( M. R. House, ed.), Clarendon Press, Oxford, pp. 13–34.Google Scholar
  94. House, M. R., and Price, J. D., 1985, New Late Devonian genera and species of tornoceratid goniatites, Palaeontology 28: 159–188.Google Scholar
  95. Howarth, M. K., 1992, The ammonite family Hildoceratidae in the Lower Jurassic of Britain, Palaeontogr. Soc. Monogr. Publ. No. 590, vol. 146: 1–200.Google Scholar
  96. Hudson, J. D., and Martill, D. M., 1991, The Lower Oxford Clay: Production and preservation of organic matter in the Callovian (Jurassic) of central England, in: Modern and Ancient Continental Shelf Anoxia (R. V. Tyson and T. H. Pearson, eds.), Geol. Soc. Spec. Pap. 363–379.Google Scholar
  97. Jacobs, D. K., 1992a, Shape, drag, and power in ammonoid swimming, Paleobiology 18: 203–220.Google Scholar
  98. Jacobs, D. K., 1992b, The support of hydrostatic load in cephalopod shells. Adaptive and ontogenetic explanations of shell form and evolution from Hooke 1695 to the present, in: Evolutionary Biology, Vol. 26 ( M. K. Hecht, B. Wallace, and R. J. Maclntyre, eds.), Plenum Press, New York, pp. 287–349.CrossRefGoogle Scholar
  99. Jacobs, D. K., and Landman, N. H., 1993, Nautilus—a poor model for the function and behavior of ammonoids? Lethaia 26: 101–112.Google Scholar
  100. Jansa, L. E, Emos, P., Tcholke, B. E., Gradstein, F., and Sheridan, R. E., 1979, Mesozoic–Cenozoic sedimentary formations of the North American Basin, western North Atlantic, in: Deep Drilling Results in the Atlantic Ocean Continental Margins and Paleoenvironment, Maurice Ewing Series 3 ( M. Talman, W. Hay, and W. B. F. Ryan, eds.), American Geophysical Union, Washington, DC, pp. 1–57.Google Scholar
  101. Jenkyns, H., 1988, The early Toarcian (Jurassic) anoxic event. Stratigraphic, sedimentary, and geochemical evidence, Am. J. Sci. 288: 101–151.CrossRefGoogle Scholar
  102. Jordan, R., 1968, Zur Anatomie mesozoischer Ammoniten nach den Strukturelementen der Gehauseinnenwand, Geol. Jahrb. Beih. 77: 1–64.Google Scholar
  103. Kammer, T. W., Brett, C. E., Boardman, D. R. II, and Mapes, R. H., 1986, Ecologic stability of the dysaerobic biofacies during the Late Paleozoic, Lethaia 19: 109–121.CrossRefGoogle Scholar
  104. Kant, R., 1975, Biometric analysis of ammonoid shells, Paläontol. Z. 49: 203–220.Google Scholar
  105. Kant, R., and Kullmann, J., 1988, Changes in conch form in the Paleozoic ammonoids, in: Cephalopods-Present and Past ( J. Wiedmann and J. Kullmann, eds.), Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp. 43–49.Google Scholar
  106. Kase, T., Shigeta, E, and Futakami, M., 1994, Limpet home depressions in Cretaceous ammonites, Lethaia 25: 49–58.CrossRefGoogle Scholar
  107. Kauffman, E. G., 1984, Paleobiogeography and evolutionary response dynamic in the Cretaceous Western Interior seaway of North America, in: Jurassic–Cretaceous Biochronology and Paleo-geography of North America (G. E. G. Westermann, ed.), Geol. Assoc. Can. Spec. Pap. 73–306.Google Scholar
  108. Kauffman, E. G., 1990, Mosasaur predation on ammonites during the Cretaceous—an evolutionary history, in: Evolutionary Paleobiology of Behaviour and Coevolution ( A. J. Boucot, ed.), Elsevier, New York, pp. 184–189.Google Scholar
  109. Kauffman, E G, Villamil. T., Harries, P. J., and Meyer, C., 1992, The flat clam controversy: Where did they come from? Where did they go? Paleontol. Soc. Spec. Publ. 6: 159.Google Scholar
  110. Kennedy, W. J., and Cobban, W. A., 1976, Aspects of ammonite biology, biogeography, and biostratigraphy, Spec. Pap. Palaeontol. 17: 1–94.Google Scholar
  111. Klinger, H. C., 1980. Speculations on buoyancy control and ecology in some heteromorph ammonites, in: The Ammonoidea, Systematics Association Spec. Vol. 18 ( M. R. House and J. R. Senior, eds.). Academic Press, London. pp. 337–355.Google Scholar
  112. Korn, D., 1986, Ammonoid evolution in late Famennian and early Tournaisian, Ann. Soc. Géol. BeIg. 109: 49–54.Google Scholar
  113. Korn, D., 1988, Oberdevonishe Goniatiten mit dreieckigen Innenwindungen, N. Jb. Geol. Paläont. Mh. 188 (10): 605–610.Google Scholar
  114. Korn, D., 1992, Relationship between shell form, septal construction and suture line in clymeniid cephalopods (Ammonoidea; Upper Devonian), N. Jb. Geol. Paläont. Abh. 185: 115–130.Google Scholar
  115. Kulicki, C., and Doguzhaeva, L., 1994, Development and calcification of the ammonitella shell, Acta Palaeontol. Pol. 39: 17–44.Google Scholar
  116. Kullmann, J, 1981, Carboniferous goniatites, in: The Ammonoidea, Systematics Association Spec. Vol. 18 ( M. R. House and J. R. Senior, eds.), Academic Press, London, pp. 37–48.Google Scholar
  117. Kullmann, J., and Scheuch, J., 1970, Wachstums-Anderungen in der Ontogenese paläozoischer Ammonoideen, Lethaia 3: 397–412.CrossRefGoogle Scholar
  118. Kullmann, J, and Scheuch, J., 1972, Absolutes und relatives Wachstum bei Ammonoideen, Lethaia 5: 129–146.CrossRefGoogle Scholar
  119. Landman, N. H., 1982, Embryonic shells of Baculites, J. Paleontol. 56: 1235–1241.Google Scholar
  120. Landman, N. H., 1986, Shell abnormalities in scaphitid ammonites, Lethaia 19: 211–224.CrossRefGoogle Scholar
  121. Landman, N. H., 1987, Ontogeny of Upper Cretaceous (Turonian–Santonian) scaphitid ammonites from the Western Interior of North America: Systematics, developmental patterns, and life history, Bull. Am. Mus. Nat. Hist. 185: 117–241.Google Scholar
  122. Landman, N. H., and Bandel, K., 1985, Internal structures in the early whorls of Mesozoic ammonoids, Am. Mus. Novit. 2823: 1–21.Google Scholar
  123. Landman, N. H., and Waage, K. M., 1993, Scaphitid ammonites of the Upper Cretaceous (Maastrichtian) Fox Hills Formation in South Dakota and Wyoming. Bull. Am. Mus. Nat. Hist. 215: 1–257.Google Scholar
  124. Lehmann, U., 1975, Über Nahrung und Ernahrungsweise der Ammoniten, Paläontol. Z. 49: 187195.Google Scholar
  125. Lehmann, U., 1976, Ammoniten, IhrLeben und Ihre Umwelt, Enke, Stuttgart.Google Scholar
  126. Lehmann, U., 1985, Zur Anatomie der Ammoniten: Tintenbeutel, Kiemen, Augen, Paläontol. Z. 59: 99–108.Google Scholar
  127. Lehmann, U., 1988, On the dietary habits and locomotion of fossil cephalopods, in: Cephalopods-Present and Past ( J. Wiedmann and J. Kullmann, eds.), Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp. 633–640.Google Scholar
  128. Lehmann, U., and Kulicki, 1990, Double function of aptychi (Ammonoidea) as jaw elements and opercula, Lethaia 23: 325–331.CrossRefGoogle Scholar
  129. Lehmann, U., and Weitschat, W., 1973, Zur Anatomie und Ökologie der Ammoniten. Funde von Kropf und Kiemen, Paläontol. Z. 47: 69–76.Google Scholar
  130. Lehmann, U., Tanabe, K., Kanie, Y., and Fukuda, Y., 1980, Über den Kieferapparat der Lytoceraten (Ammonoidea), Paläontol. Z. 54: 319–329.Google Scholar
  131. Little, R., Baker, D. R., Leythaeuser, D., and Rullkottner, J., 1991, Keys to the depositional history of the Posidonia Shale (Toarcian) in the Hills Syncline, northern Germany, in: Modern and Ancient Continental Margin Anoxia (R. V. Tyson and T. H. Pearson, eds.), Geol. Soc. Spec. Publ. 58: 311–333.Google Scholar
  132. Loh, H., Maul, B., Prauss, M., and Riegel, W., 1986, Primary production, marl formation and carbonate species in the Posidonia Shale of NW Germany, Mitt. Geol.-Paläont. Inst. Univ. Hamburg 60: 397–421.Google Scholar
  133. Mapes, R. H., 1979, Carboniferous and Permian Bactritoidea (Cephalopoda) in North America, Univ. Kans. Paleontol. Contrib. Artic. 64: 1–75.Google Scholar
  134. Mapes, R. H., 1987, Upper Paleozoic cephalopod mandibles: Frequency of occurrence, modes of preservation, and paleoecological implications, J. Paleontol. 61: 521–538.Google Scholar
  135. Mapes, R. H., and Hansen, M. C., 1984, Pennsylvanian shark-cephalopod predation: A case study, Lethaia 17: 175–183.CrossRefGoogle Scholar
  136. Mapes, R. H., Tanabe, K., Landman, N. H., and Faulkner, C. J., 1992, Upper Carboniferous ammonoid shell clusters: Transported accumulations or in situ nests? Paleontol. Soc. Spec. Pub. 6: 196.Google Scholar
  137. Marchand, D., Thierry, J., and Tintant, H., 1985, Influence des seuls et des hauts-fonds sur la morphology et l’évolution des ammonites, Inst. Sci. Terre Univ. Dijon Bull. Sect. Sci. 9: 191–202.Google Scholar
  138. Marcinowski, R., and Wiedmann, J., 1985, The Albian ammonite fauna of Poland and its paleogeographical significance, Acta Geol. Pol. 35: 199–218.Google Scholar
  139. Maynard, J. R., and Leder, M. R., 1992, On the periodicity and magnitude of late Carboniferous glacio-eustatic sea-level changes, J. Geol. Soc. (Lund.) 149: 303–311.CrossRefGoogle Scholar
  140. McLearn, F. H., 1969, Middle Triassic (Anisian) ammonoids from northeastern British Columbia and Ellesmere Island, Geol. Surv. Can. Bull. 170: 1–90.Google Scholar
  141. Mehl, J., 1978a, Ein Koprolith mit Ammoniten-Aptychen aus dem Solnhofer Plattenkalk, Jber. Wetterau. Ges. Naturkunde 129: 85–89.Google Scholar
  142. Mehl, J., 1978b, Anhaufungen scherbenartiger Fragmente von Ammonitenschalen im suddeutschen Lias und Malm und ihre Deutung als Frassreste, Ber. Naturforsch Ges. Frei b. Breisgau 68: 75–93.Google Scholar
  143. Mehl, J., 1984, Radula and arms of Michelinoceras sp. from the Silurian of Bohemia, Paläontol. Z. 58: 211–229.Google Scholar
  144. Meister, C., 1993, Parallel evolution in Euboreal and Tethyan Juraphyllitidae: The role of internal and external constraints, Lethaia 26: 123–132.CrossRefGoogle Scholar
  145. Milson, C. V., 1994, Saccocoma, a benthic crinoid from the Jurassic Solnhofen Limestone, Germany, Palaeontology 37: 121–130.Google Scholar
  146. Morris, K. A., 1979, A classification of Jurassic marine shale sequences: An example from the Toarcian (Lower Jurassic) of Great Britain, Palaeogeogr. Palaeoclimatol. Palaeoecol. 26: 117126.Google Scholar
  147. Morris, K. A., 1980, Comparison of major regions of organic-rich mud deposition in the British Jurassic, J. Geol. Soc. (Lund.) 137: 157–170.CrossRefGoogle Scholar
  148. Morrison, J. O., 1986, Molluscan carbonate geochemistry and paleooceanography of the Late Cretaceous Western Interior Seaway of North America, unpublished M.Sc. thesis, Brock University, St. Catherines, Ontario.Google Scholar
  149. Morton, N., 1984, Morphological trends in the evolution of some Middle Jurassic ammonites, Lethaia 17: 306.CrossRefGoogle Scholar
  150. Morton, N., 1988, Segregation and migration patterns in some Graphoceras populations (Middle Jurassic), in: Cephalopods-Present and Past ( J. Wiedmann and J. Kullmann, eds.), Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp. 377–385.Google Scholar
  151. Morton, N., and Nixon, M., 1987, Size and function of ammonoid aptychi in comparison with buccal masses in modern cephalopods, Lethaia 20: 231–238.CrossRefGoogle Scholar
  152. Nassichuk, W. W., 1970, Permian ammonoids from Devon and Melville Islands, Canadian arctic archipelago, J. Paleontol. 44: 77–97.Google Scholar
  153. Nesis, K. N., 1986, On the feeding and causes of extinction of certain heteromorph ammonites, Paleontol. Zh. 1986: 8–15Google Scholar
  154. Nesis, K. N., 1986, Engl. transi. Paleontol. J. 20: 5–11.Google Scholar
  155. Nesis, K. N., 1987, Cephalopods of the World, Squids, Cuttlefishes, Octopuses and Allies, (transi. from Russian), T.F.H. Publications, Neptune City, NJ.Google Scholar
  156. Newell, N. D., Rigby, J. K., Fisher, A. G., Whitman, A. J., Hickox, J. E., and Bradley, J. I., 1953, The Permian Reef Complex of the Guadelupe Mountains in Texas and New Mexico, Freeman and Co., San Francisco.Google Scholar
  157. Newton, C. R., 1988, Significance of “Tethyan” fossils in the American Cordillera, Science 242: 385–390.PubMedCrossRefGoogle Scholar
  158. Nixon, M., 1988, The feeding mechanism and diets of cephalopods—living and fossil, in: Cephalopods-Present and Past ( J. Wiedmann and J. Kullmann, eds.), Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp. 641–652.Google Scholar
  159. O’Dor, R. K., and Wells, M. J., 1990, Performance limits of `antique’ and `state-of-the-art’ cephalopods, Nautilus and squid, Am. Malacol. Union Prog. Abstr. 56 Ann. Meeting, p. 52.Google Scholar
  160. Okamoto, T., 1984, Theoretical morphology of Nipponites (a heteromorph ammonite) in Fossils (Kaseki), Palaeont. Soc. Jpn. 36: 37–51.Google Scholar
  161. Okamoto, T., 1988a, Analysis of heteromorph ammonoids by differential geometry, Palaeontology 31: 35–52.Google Scholar
  162. Okamoto, T., 1988b, Changes in life orientation during the ontogeny of some heteromorph ammonoids, Palaeontology 31: 281–294.Google Scholar
  163. Okamoto, T., 1988c, Developmental regulation and morphological saltation in the heteromorph ammonite Nipponites, Paleobiology 14: 273–286.Google Scholar
  164. Olivero, E. B., and Zinsmeister, W. J., 1989, Large heteromorph ammonites from the Upper Cretaceous of Seymour Island, Antarctica, J. Paleontol. 63: 626–635.Google Scholar
  165. Oloriz, E, 1976, Kimmeridgiano-Tithonico inferior en e1 sector central de la Cordillera Betica, Zona Subbetica, paleontologia, bioestratigrafia, Tesis Doct., Universidad de Granada.Google Scholar
  166. Oloriz, E, Marques, B., and Rodriguez-Tovar, E. J., 1991, Eustatism and faunal associations. Examples from the south Iberian margin during the Late Jurassic (Oxfordian-Kimmeridgian), Eclogae Geol. Hely. 84: 83–106.Google Scholar
  167. Oschmann, W., 1991, Distribution, dynamics and palaeontology of Kimmeridgian (Upper Jurassic) shelf anoxia in western Europe, in: Modern and Ancient Continental Shelf Anoxia (R. V. Tyson and T. H. Pearson, eds.), Geol. Soc. Spec. Pap. 58: 381–395.Google Scholar
  168. Pamenter, C. B., 1956, Imitoceras from the Exshaw Formation of Alberta, J. Paleontol. 30: 965–966.Google Scholar
  169. Prauss, M., Ligouis, B., and Lutterbacher, H., 1991, Organic matter and palynomorphs in the Posidonienschiefer’ (Toarcian, Lower Jurassic) of southern Germany, in: Modern and Ancient Continental Shelf Anoxia (R. V. Tyson and T. H. Pearson, eds.), Geol. Soc. Spec. Publ. 58: 335–351.Google Scholar
  170. Ramsbottom, W. H. C., 1978, Carboniferous, in: The Ecology of Fossils (W.S. McKerrow,“ ed.), Duckworth, London, pp. 146–183.Google Scholar
  171. Raup, D. M., 1967, Geometric analysis of shell coiling: Coiling in ammonoids, J. Paleontol. 41: 43–65.Google Scholar
  172. Reeside, J. B., and Cobban, W. A., 1960, Studies of the Mowry Shale (Cretaceous) and contempo- rary formations in the United States and Canada, U.S. Geol. Surv. Prof. Pap. 355: 1–126.Google Scholar
  173. Renz, O., 1972, Aptychi (Amnmonoidea) from the Upper Jurassic and Lower Cretaceous of the western North Atlantic (site 105, leg 11, DSDP), in: Initial Reports DSDP,No. 11 (C. D. Holister, J. I. Ewing, et al.,eds.), U.S. Government Printing Office, Washington, DC, pp. 607–620.Google Scholar
  174. Renz, O., 1973, Two lamellaptychi (Ammonoidea) from the Magellan Rise in the central Pacific, in: Initia] Reports DSDP, No. 17 ( E. L. Winterer and J. L. Hewing, eds.), U.S. Government Printing Office, Washington, DC, pp. 895–901.Google Scholar
  175. Renz, O., 1978, Aptychi (Ammonoidea) from the Early Cretaceous of the Blake—Bahama Basin, leg 44, hole 391c, DSDP, in: Initial Reports DSDP, No. 44 ( W. E. Benson and R. E. Sheridan, eds.), U.S. Government Printing Office, Washington, DC, pp. 899–909.Google Scholar
  176. Renz, O., 1979, Aptychi (Ammonoidea) and ammonites from the Lower Cretaceous of the western Bermuda Rise, leg 43, site 387, DSDP, in: Initial Reports DSDP, No. 43 ( B. E. Tucholke and P. R. Vogt, eds.), U.S. Government Printing Office, Washington, DC, pp. 591–597.Google Scholar
  177. Reyment, R. A., 1980, Floating orientations of cephalopod shell models, Palaeontology 23: 931–936.Google Scholar
  178. Riccardi, A. C., and Westermann, G. E. G., 1991, Middle Jurassic ammonite fauna of the Argentine-Chilean Andes, III: Bajocian-Callovian Eurycephalitinae, Stephanocerataceae, Pa]aeontogr 216: 1–110.Google Scholar
  179. Riccardi, A. C., Gulisano, C. A., Mojica, J., Palacios, O., Schubert, C., and Thomson, M. R. A., 1992, Western South America and Antarctica, in: The Jurassic of the Circum-Pacific ( G. E. G. Westermann, ed.), Cambridge University Press, New York, pp. 122–161.Google Scholar
  180. Rieber, H.. 1973, Ergebnisse paläontologisch-stratigraphischer Untersuchungen in der Grenzbitumenzone (Mittlere Trias) des Monte San Giorgio, Eclogae Geol. HeIv 66: 667–685.Google Scholar
  181. Rieber, H.. 1975, Der Posidonienschiefer (Oberer Lias) von Holzmaden und die Grenzbitumen-zone (Mittlere “’rias) des Monte San Giorgio (Kt. Tessin, Schweiz), Jahresh. Ges. Naturkd. Württemb. 130: 163–190.Google Scholar
  182. Sadki, D., and Elmi, S., 1991. Fluctuations de la composition des peuplements d’ammonoides en relation avec la dynamique sedimentaire au passage Aalenien—Bajocien dans Haut—Atlas Central Marocain, in Conference on Aalenian and Bofocian Stratigraphy, Isle of Skye, April, 1991 ( N. Morton, ed.), Birkbeck College, University of London, London, pp. 113–122.Google Scholar
  183. Sandoval, J., 1983, Bioestratigrafia y paleontologia (Stephanocerataceae y Perisphinctaceae) del Bajocense y Bathoniense en las Cordilleras Beticas, Tesis Doct., Universidad de Granada.Google Scholar
  184. Sandoval, J., Westermann, G. E. G., and Marshall, M. C., 1990, Ammonite fauna, stratigraphy and ecology of Bathonian-Callovian (Jurassic) Tecocoyunca Group, South Mexico, Palaeontogr. A 210: 93–149.Google Scholar
  185. Saunders, W. B., 1984, Nautilus belauensis growth and longevity: Evidence from marked and recaptured animals, Science 224: 990–992.Google Scholar
  186. Saunders, W. B., 1995, The ammonoid suture problem: Relationships between shell septum thickness and suture complexity in Paleozoic ammonoids, Paleobiology 21: 343–355.Google Scholar
  187. Saunders, W. B., and Shapiro, E. A., 1986, Calculation and simulation of ammonoid hydrostatics, Paleobiology 12: 64–79.Google Scholar
  188. Saunders, W. B., and Swan, R. H., 1984, Morphology and morphologic diversity of mid-Carboniferous (Namurian) ammonoids in time and space, Paleobiology 10: 195–228.Google Scholar
  189. Savrda, C. E., and Bottjer, D. J., 1991, Oxygen-related biofacies in marine strata: An overview and update, in: Modern and Ancient Continental Shelf Anoxia (R. V. Tyson and T. H. Pearson, eds.), Geol. Soc. Spec. Pap. 58: 201–219.Google Scholar
  190. Schindewolf, O. H., 1958, Über Aptychen (Ammonoidea), Palaeontogr. A 111: 1–46.Google Scholar
  191. Schindewolf, O. H., 1959, Adolescent cephalopods from the Exshaw Formation of Alberta, J. Paleontol. 33: 971–976.Google Scholar
  192. Schindewolf, O. H., 1963, Acuariceras und andere heteromorphe Ammoniten aus dem oberen Dogger, N. Jb. Geol. Paläont. Abh. 116: 119–148.Google Scholar
  193. Schindewolf, O. H., 1971, Über Clymenien und andere Cephalopoden, Akad. Wiss. Lit. Abh. Math. Naturwiss. Kl. 171: 355–449.Google Scholar
  194. Schmidt, H., 1930, Über die Bewegungsweise der Cephalopoden, Paläontol. Z. 12: 194–207.Google Scholar
  195. Schmidt–Effing, R., 1972, Die Dactylioceratidae, eine Ammoniten-Familie des unteren Jura, Münster. Forsch. Geol. Paläontol. 25: 1–254.Google Scholar
  196. Seilacher, A., 1993, Ammonite aptychi: How to transform a jaw into an operculum, Am. J. Sci. 293A: 20–32.CrossRefGoogle Scholar
  197. Sequeiros, L., 1984, Facies y ammonoideos de edad Calloviense al sur de Zaragoza (Cordillera Iberica), Bol. Geol. Min. (Esp.) 95 (2): 109–115.Google Scholar
  198. Shapiro, E. A., and Saunders, W. B.. 1987, Nautilus shell hydrostatics, in: Nautilus (W. B. Saunders and N. H. Landman, eds.), Plenum Press, New York, pp. 527–545.Google Scholar
  199. Shigeta, Y., 1993, Post-hatching early life history of Cretaceous Ammonoidea, Lethaia 26: 23–46.CrossRefGoogle Scholar
  200. Silberling, N. J., and Nichols, K. M., 1982, Middle Triassic molluscan fossils of biostratgraphic significance from the Humboldt Range, northwestern Nevada, U.S. Geol. Surv. Prof. Pap. 1207: 1–77.Google Scholar
  201. Smith, P. L., Westermann, G. E. G., Stanley, G. D., Jr., and Yancey, T. E., 1990, Paleobiogeography of the ancient Pacific, Science 249: 680–683.PubMedCrossRefGoogle Scholar
  202. Spinosa, C., Furnish. W. M., and Glenister, B. F., 1970, Araxoceratidae, Upper Permian ammonoids, from the Western Hemisphere, J. Paleontol. 44: 730–736.Google Scholar
  203. Spinosa, P. L., Furnish, W. M., and Glenister, G. F., 1975, The Xenodiscidae, Permian ceratitoid ammonoids, J. Paleontol. 49: 239–283.Google Scholar
  204. Stevens, G. R., 1988. Giant ammonites: A review, in: Cephalopods—Present and Past ( J. Wied-mann and J. Kullmann, eds.), Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp. 141–166.Google Scholar
  205. Sturani, C., 1971, Ammonites and stratigraphy of the “Posidonia alpina” beds of the Venetian Alps, Mem. Inst. Geol. Min. Univ. Padova 28: 1–190.Google Scholar
  206. Swan, R. H., and Saunders, W. B., 1987, Function and shape in Late Paleozoic (mid-Carboniferous) ammonoids, Paleobiology 13: 297–311.Google Scholar
  207. Tanabe, K., 1977, Functional evolution of Otoscaphites puerculus (Jimbo) and Scaphites planus (Yabe), Upper Cretaceous ammonites, Mem. Fac. Sci. Kyushu Univ., D, Geol. 23: 367–407.Google Scholar
  208. Tanabe, K., 1979, Palaoecological analysis of ammonoid assemblages in the Turonian Scaphites facies of Hokkaido, Japan, Palaeontology 22: 609–630.Google Scholar
  209. Tanabe, K., 1983, The jaw apparatus of Cretaceous desmoceratid ammonites, Palaeontology 26: 677–689.Google Scholar
  210. Tanabe, K., and Fukuda, Y., 1987, The jaw apparatus of the Cretaceous ammonite Reesidites, Lethaia 20: 41–48.CrossRefGoogle Scholar
  211. Tanabe, K., and Ohtsuka, Y., 1985, Ammonoid early internal shell structure: Its bearing on early life history, Paleobiology 11: 310–322.Google Scholar
  212. Tanabe, K., and Shigeta, Y., 1987, Ontogenetic shell variation and streamlining of some Cretaceous ammonites, Trans. Proc. Palaeont. Soc. Jpn. N.S. 147: 165–179.Google Scholar
  213. Tanabe, K., Obata, I., and Futakami, M, 1978, Analysis of ammonoid assemblages in the Upper Turonian of the Manji area, central Hokkaido, Bull. Nat. Sci. Mus. (Tokyo) 4 (2): 37–62.Google Scholar
  214. Tanabe, K., Obata, I., and Futakami, M., 1981, Early shell morphology in some Upper Cretaceous heteromorph ammonites, Trans. Proc. Palaeont. Soc. Jpn. N.S. 124: 215–234.Google Scholar
  215. Tanabe, K., Landman, N. H.. and Weitschat, W, 1993a, Septal necks in Mesozoic Ammonoidea: Structure, ontogenetic development and evolution, in: The Ammonoidea: Environment, Ecology and Evolutionary Change, Systematics Association Vol. 47 ( M.R. House, ed.), Clarendon Press, Oxford, pp. 57–84.Google Scholar
  216. Tanabe, K., Landman, N. H., Mapes, R. H., and Faulkner, C. J., 1993b, Analysis of a Carboniferous embryonic ammonoid assemblage—implications for ammonoid embryology, Lethaia 20: 215–224.CrossRefGoogle Scholar
  217. Tanabe, K., Shigeta, Y., and Mapes, R. H., 1995, Early life history of Carboniferous ammonoids inferred from analysis of fossil assemblages and shell hydrostatics, Palaios 10: 80–86.CrossRefGoogle Scholar
  218. Tatzreiter, E, and Vöros, A., 1991, Vergleich der pelsonischen (Anis, Mitteltrias) Ammonitenfaunen von Grossreifling (nordliche Kalkalpen) und Aszofo (Balaton-Gebiet), in: Jubilaumsschr. 20 Jahre Geol. Zusammenarbeit Osterreich-Ungarn, Part 1 ( H. Lobitzer and G. Csaszar, eds. ), Wien, pp. 247–259.Google Scholar
  219. Taylor, D. G., 1982, Jurassic shallow marine invertebrate depth zones, with exemplification from the Snowshoe Formation, Oregon, Oregon Geol. 44 (5): 51–58.Google Scholar
  220. Taylor, D. G., Smith, P. L., Laws, R. A., and Guex, J., 1983, The stratigraphy and biofacies trends of the Lower Mesozoic Gabbs and Sunrise Formations, west-central Nevada, Can. J. Earth Sci. 20: 1598–1608.CrossRefGoogle Scholar
  221. Tintant, H., Marchand, D., and Mouterde, R., 1982, Relations entre les milieux marins et l’évolution des Ammonoides: Les radiations adaptives du Lias, Bull. Soc. Géol. Fr. 24: 951–961.Google Scholar
  222. Tozer, E. T., 1981, Triassic Ammonoidea: Geographic and stratigraphic distribution, in: The Ammonoidea, Systematics Association Spec. Vol. 18 ( M. R. House and J. R. Senior, eds.), Academic Press, London, pp. 397–431.Google Scholar
  223. Trueman, A. E., 1941, The ammonite body—chamber, with special reference to the buoyancy and mode of life of the living ammonite, J. Geol. Soc. (Land.) 384: 339–383.Google Scholar
  224. Tyson, R. V., and Pearson, T. H., 1991, Modern and ancient continental shelf anoxia: An overview, in: Modern and Ancient Continental Shelf Anoxia (R. V. Tyson and T. H. Pearson, eds.) Geol. Soc. Spec. Publ. 58: 1–26.Google Scholar
  225. Urlichs, M., and Mundlos, R., 1985, Immigration of cephalopods into the German Muschelkalk basin and its influence on the suture lines, in: Sedimentary and Evolutionary Cycles, Lecture Notes in Earth Sciences ( U. Bayer and A. Seilacher, eds.), Springer, Berlin, pp. 221–236.CrossRefGoogle Scholar
  226. Urlichs, M., Wild, R.. and Ziegler, B., 1979. Fossilien aus Holzmaden, Stuttg. Beitr. Naturkd. C 11: 1–34.Google Scholar
  227. Van Der Zwan, G. J., and Jorissen, E J., 1991, Biofacial patterns in river-induced anoxia, in: Modern and Ancient Continental Shelf Anoxia (R. V. Tyson and T. H. Pearson, eds.). Geol. Soc. Spec. Publ. 58: 65–82.Google Scholar
  228. Vasicek, Z., and Wiedmann, J., 1994, The Leptoceratoidinae: Small heteromorph ammonites from the Barremian, Palaeontology 37: 203–239.Google Scholar
  229. Wang, Y., and Westermann, G. E. G., 1993, Paleoecology of Triassic ammonoids, Geobios Mém. Spéc. 15: 373–392.CrossRefGoogle Scholar
  230. Ward, D. J., and Hollingworth, N. T. J., 1990, The first record of a bitten ammonite from the Middle Oxford Clay (Callovian, Middle Jurassic) of Bletchley, Buckingshamshire, Mesozoic Res. 2: 153–161.Google Scholar
  231. Ward, P. D., 1976a, Stratigraphy, Paleoecology and Functional Morphology of Heteromorph Ammonites in the Upper Cretaceous Nanaimo Group, British Columbia and Washington, unpublished Ph.D. thesis, Department of Geology, McMaster University, Hamilton, Ontario.Google Scholar
  232. Ward, P. D., 1976b, Upper Cretaceous ammonites (Santonian-Campanian) from Orcas Islands, Washington, J. Paleontol. 50: 454–461.Google Scholar
  233. Ward, P. D., 1981. Shell sculpture as a defensive adaptation in ammonoids, Paleobiology 7: 96–100.Google Scholar
  234. Ward, P. D., 1986a, Rates and processes of compensatory buoyancy change in Nautilus macromphalus, Veliger 186: 356–368.Google Scholar
  235. Ward, P. D., 1986b, Cretaceous ammonite shell shapes, Malacologia 27: 3–28.Google Scholar
  236. Ward, P. D., 1987, The Natural History of Nautilus, Allen and Unwin, Boston.Google Scholar
  237. Ward, P. D., 1990a, A review of Maastrichtian ammonite ranges, Geol. Soc. Am. Spec. Pap. 247: 519–530.CrossRefGoogle Scholar
  238. Ward, P. D., 1990b, The Cretaceous/Tertiary extinctions in the marine realm: A 1990 perspective, Geol. Soc. Am. Spec. Pap. 247: 425–432.CrossRefGoogle Scholar
  239. Ward, P. D., and Bandel, K., 1987, Life history strategies in fossil cephalopods, in: Cephalopod Life Cycles, Academic Press, London, pp. 329–350.Google Scholar
  240. Ward, P. D., and Kennedy, W. J., 1993, Maastrichtian ammonites from the Biscay Region (France, Spain), Paleontol. Soc. Mem. 34: 1–58.Google Scholar
  241. Ward, P. D., and Signor, P. W. III, 1983, Evolutionary tempo in Jurassic and Cretaceous ammonites, Paleobiology 9: 183–198.Google Scholar
  242. Ward, P. D., and Westermann, G. E. G., 1977, First occurrence, systematics and functional morphology of Nipponites from the Americas, J. Paleontol. 51: 367–372.Google Scholar
  243. Ward, P. D., and Westermann, G. E. G., 1985. Cephalopod paleoecology, in: Mollusks, Notes for Short Course (D. J. Bottjer, C. S. Hickman, and P. D. Ward, organizer: T. W. Broadhead, ed.Google Scholar
  244. Ward, P. D., and Westermann, G. E. G., 1985. Univ. Tenn. Stud. Geol. 13: 1–18.Google Scholar
  245. Ward. P. D., Kennedy, W. J., Macleod, K. G., and Mount, J. E, 1991, Ammonite and inoceramid bivalve extinction patterns in Cretaceous/Tertiary boundary sections of the Biscay region (southwestern France. northern Spain). Geology 19: 1181–1184.CrossRefGoogle Scholar
  246. Wells, M. J., Wells, J., and O’Dor, R. K., 1992, Life at low oxygen tensions: The behaviour and physiology of Nautilus pompilius and the biology of extinct forms, J. Mar. Biol. Assoc. U.K. 72: 313–328.CrossRefGoogle Scholar
  247. Wendt, J., 1976, Submarine Spaltenfullungen, Zentralbl. Geol. Paldont. Teil II 176: 245–251.Google Scholar
  248. Wendt, J., and Eigner, T., 1985, Facies patterns and depositional environments of Paleozoic cephalopod limestones, Sedim. Geol. 44: 15–21.CrossRefGoogle Scholar
  249. Wendt, J., Eigner, T., and Neugenauer, J., 1984, Cephalopod limestone deposition on a shallow pelagic ridge: The Tafilalt Platform (Upper Devonian, eastern Anti-Atlas, Morocco), Sedimentology 31: 601–625.CrossRefGoogle Scholar
  250. Westermann, G. E. G., 1954, Monographie der Otoitidae (Ammonoidea), Geol. Jahrb. Beih. 15: 1–364.Google Scholar
  251. Westermann, G. E. G., 1958, The significance of septa and sutures in Jurassic ammonite systematics, Geol. Mag. 45: 441–455.CrossRefGoogle Scholar
  252. Westermann, G. E. G., 1964, Sexual-Dimorphismus bei Ammonoideen und seine Bedeutung für die Taxionomie der Otoitidae, Palaeontogr. A 124: 33–73.Google Scholar
  253. Westermann, G. E. G., 1966, Covariation and taxonomy of the Jurassic ammonite Sonninia adicra (Waagen), N. jb. Geol. Paläontol. Abh. 124: 289–312.Google Scholar
  254. Westermann, G. E. G., 1971, Form, structure and function of shell and siphuncle in coiled Mesozoic ammonoids, Life Sci. Contrib. R. Ont. Mus. 78: 1–39.Google Scholar
  255. Westermann, G. E. G., 1975, A model for origin, function and fabrication of fluted cephalopod septa, Paläontol. Z. 49: 235–253.Google Scholar
  256. Westermann, G. E. G., 1977, Form and function of orthoconic cephalopod shells with concave septa, Paleobiology 3: 300–321.Google Scholar
  257. Westermann, G. E. G., 1982, The connecting rings of Nautilus and Mesozoic ammonoids: Implications for ammonoid bathymetry, Lethaia 15: 374–384.CrossRefGoogle Scholar
  258. Westermann, G. E. G., 1990, New developments in ecology of Jurassic–Cretaceous ammonoids, in: Fossili. Evolutione, Ambiente, Atti II Cony. Int. Pergola 1987 ( G. Pallini, F. Cecca, S. Cresta, and M. Santantonio, eds.), Tecnostampa, Ostra Vetere, Italy, pp. 459–478.Google Scholar
  259. Westermann, G E G, 1993, On alleged negative buoyancy in ammonoids, Lethaia 26: 246.CrossRefGoogle Scholar
  260. Westermann, G. E. G., and Callomon, J. H., 1988, The Macrocephalitinae and associated Bathonian and early Callovian (Jurassic) ammonoids of the Sula Islands and New Guinea, Palaeontogr, 203: 1–90.Google Scholar
  261. Westermann, G. E. G., and Hewitt, R. A.. 1995, Do limpet pits indicate that desmoceratacean ammonites lived mainly in surface waters? Lethaia 28: 24.CrossRefGoogle Scholar
  262. Westermann, G. E. G., and Riccardi, A. C., 1979, Middle Jurassic ammonoid fauna and biochronology of the Argentine-Chilean Andes. Part II: Bajocian Stephanocerataceae, Palaeontogr. A 164: 85–118.Google Scholar
  263. Westermann, G. E. G., and Hewitt, R. A. (in prep), Ammonoid septal fluting, complex sutures, and shell strength: A critique.Google Scholar
  264. Wiedmann, J., 1972, Ammoniten-Nuklei aus Schlammproben der nordalpinen Obertrias—ihre stammesgeschichtliche und stratigraphische Bedeutung, Mitt. Ges. Geol. Bergbaustud. 21: 561–622.Google Scholar
  265. Wiedmann, J., 1988a, Ammonite extinction and the Cretaceous–Tertiary Boundary Event, in: Cephalopods—Present and Past ( J. Wiedmann and J. Kullmann, eds.), Schweìzerbart’sche Verlagsbuchhandlung, Stuttgart, pp. 117–140.Google Scholar
  266. Wiedmann, J., 1988b, Plate tectonics, sea level changes, climate and the relationship to ammonite evolution, provincialism, and mode of life, in: Cephalopods—Present and Past ( J. Wiedmann and J. Kullmann, eds.), Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp. 737–765.Google Scholar
  267. Wignall, P. B., 1987, A biofacies analysis of the Gastrioceras cumbriense Marine Band (Namurian) of the central Pennines, Proc. Yorkshire Geol. Soc. 46: 111–121.CrossRefGoogle Scholar
  268. Wignall, P. B., 1990, Observations on the evolution and classification of dysaerobic communities, in: Paleocommunity Temporal Dynamics: The Long-term Development of Multispecies Assemblies (W. Miller, ed.)Google Scholar
  269. Wignall, P. B., 1990, Paleontol. Soc. Spec. Publ. 5: 99–111.Google Scholar
  270. Wignall, P. B., and Hallam, A., 1991, Biofacies, stratigraphic distribution and depositional models of British onshore Jurassic black shales, in: Modern and Ancient Continental Shelf Anoxia (R. V. Tyson and T. H. Pearson, eds. )Google Scholar
  271. Wignall, P. B., and Hallam, A., 1991, Geol. Soc. Spec. Pap. 58: 291–309.CrossRefGoogle Scholar
  272. Wignall, P. B., and Hallam, A., 1993, Griesbachian (earliest Triassic) palaeoenvironmental changes in the Salt Range, Pakistan and southeast China and their bearing on the Permo-Triassic mass extinction, Palaeogeogr. Palaeoclimatol. Palaeoecol. 102: 215–237.CrossRefGoogle Scholar
  273. Wilde, P., and Berry, W. B. N., 1984, Destabilization of the oceanic density structure and its significance to marine “extinction” events, Palaeogeogr. Palaeoclimatol. Palaeoecol. 48: 143–162.CrossRefGoogle Scholar
  274. Ziegler, B. 1967. Ammoniten-Ökologie am Beispiel des Oberjura, Geol. Rundsch. 56: 439–464.CrossRefGoogle Scholar
  275. Ziegler, B., 1980, Ammonoid biostratigraphy and provincialism: Jurassic-Old World, in: The Ammonoidea, Systematics Association Spec. Vol. 18 ( M. R. House and J. R. Senior, eds.) Academic Press, London, pp. 433–457.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Gerd E. G. Westermann
    • 1
  1. 1.Department of GeologyMcMaster UniversityHamiltonCanada

Personalised recommendations