Ammonoid Taphonomy

  • Haruyoshi Maeda
  • Adolf Seilacher
Part of the Topics in Geobiology book series (TGBI, volume 13)


Taphonomy deals with the differential decay of organismic shapes, tissues, and skeletons under the influence of biological and physical agents and their fixation in the fossil record. This helps us to understand cases of exceptional preservation, sometimes including soft parts (Konservat-Lagerstätten). On the other hand, it provides a measure of the amount of distortion and time averaging that fossil assemblages and shell beds (Konzentrat-Lagerstätten) have undergone compared to the original biocoenosis. In this sense, taphonomy is a geological discipline and an important tool in facies analysis.


Body Chamber Carbonate Concretion Calcareous Concretion Aragonitic Shell Septal Neck 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allison, P. A., 1988, Phosphatized soft-bodied squids from the Jurassic Oxford Clay, Lethaia 21: 403–410.CrossRefGoogle Scholar
  2. Allison, P. A., 1990a, Decay processes, in: Palaeobiology—A Synthesis ( D. E. G. Briggs and P. R. Crowther, eds.), Blackwell Science Publications, Oxford, pp. 213–216.Google Scholar
  3. Allison, P. A., 1990b, Carbonate nodules and plattenkalks, in: Palaeobiology—A Synthesis ( D. E. G. Briggs and P. R. Crowther, eds.), Blackwell Science Publications, Oxford, pp. 250–253.Google Scholar
  4. Allison, P. A., 1990c, Pyrite, in: Palaeobiology—A Synthesis ( D. E. G. Briggs and P. R. Crowther, eds.), Blackwell Science Publications, Oxford, pp. 253–255.Google Scholar
  5. Allison, P. A., Smith, C. R., Kukert, H., Deming, J. W., and Bennett, B. A., 1991, Deep-water taphonomy of vertebrate carcasses: A whale skeleton in the bathyal Santa Catalina Basin, Paleobiology 17: 78–89.Google Scholar
  6. Arthur, M. A., 1979, North Atlantic Cretaceous black shales: The record at Site 398 and a brief comparison with other occurrences, Mit. Rep. DSDP 47: 719–738.Google Scholar
  7. Bandel, K., 1988, Operculum and buccal mass of ammonites, in: Cephalopods—Present and Past ( J. Wiedmann and J. Kullmann, eds.), Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp. 653–678.Google Scholar
  8. Barthel, K. W., Swinburne, N. H. M., and Conway Morris, S., 1990, Solnhofen: A Study in Mesozoic Palaeontology, Cambridge University Press, Cambridge.Google Scholar
  9. Behrensmeyer, A. K., and Kidwell, S. M., 1985, Taphonomy’s contributions to paleobiology, Paleobiology 11: 105–119.Google Scholar
  10. Berner, R. A., 1968, Calcium carbonate concretions formed by the decomposition of organic matter, Science 159: 195–197.PubMedCrossRefGoogle Scholar
  11. Boston, W. B., and Mapes, R. H., 1991, Ectocochleate cephalopod taphonomy, in: The Process of Fossilization ( S. K. Donovan, ed.), Belhaven Press, London, pp. 220–240.Google Scholar
  12. Brenner, K., and Seilacher, A., 1978, New aspects about the origin of the Toarcian Posidonia Shales, N. Jb., Geol. Paläont. Abh. 157: 11–18.Google Scholar
  13. Brett, C. E., and Baird, G. C., 1986, Comparative taphonomy: A key to paleoenvironmental interpretation based on fossil preservation, Palaios 1: 207–227.CrossRefGoogle Scholar
  14. Cecca, E. 1992. Ammonite habitats in the Early Tithonian of Western Tethys, Lethaia 25: 257–267.CrossRefGoogle Scholar
  15. Chamberlain, J. A., Jr., and Weaver, J. S., 1978, Equations of motion for post-mortem sinking of cephalopod shells, Math. Geol. 10: 673–689.CrossRefGoogle Scholar
  16. Chamberlain, J. A., Jr., Ward, P. D., and Weaver, J. S., 1981, Postmortem ascent of Nautilus shells: Implications for cephalopod paleo-biogeography, Paleobiology 7: 494–509.Google Scholar
  17. Closs, D., 1967, Goniatiten mit Radula und Kiefferapparat in der Itararé-Formation von Uruguay, Paläontol. Z. 41: 19–37.Google Scholar
  18. Dagys, A. S., and Weitschat, W., 1993, Extensive intraspecific variation in a Triassic ammonoid from Siberia, Lethaia 26: 113–121.CrossRefGoogle Scholar
  19. Denton, E. J., and Gilpin-Brown, J. B., 1966, On the buoyancy of the pearly nautilus, J. Mar. Biol. Assoc. U.K. 46: 723–759.CrossRefGoogle Scholar
  20. Donovan, S. K., 1989, Taphonomic significance of the encrustation of the dead shell of Recent Spirula spirula (Linné) (Cephalopoda: Coleoidea) by Lepas anatifem Linné (Cirripedia: Thoracia), J. Paleontol. 63: 698–702.Google Scholar
  21. Fernandez-Lopez, S., 1984, Criterios elementales de reelaboración taphonómica en ammonites de la Cordillera Ibérica, Acta Geol. Hisp. 19: 105–116.Google Scholar
  22. Fernandez-Lopez, S., 1991, Taphonomic concepts for a theoretical biochronology, Rev. Esp. Paleont. 6: 37–49.Google Scholar
  23. Fernandez-Lopez, S., and Meléndez, G., 1994, Abrasion surfaces on internal moulds of ammonites as palaeobathymetric indicators. Palaeogeogr. Palaeoclimatol. Palaeoecol. 110: 29–42.CrossRefGoogle Scholar
  24. Fürsich, E T., 1990, Fossil concentrations and life and death assemblages, in: Palaeobiology—A Synthesis ( D. E. G. Briggs and P. R. Crowther, eds.), Blackwell Scientific Publications, Oxford, pp. 235–239.Google Scholar
  25. Gill, J. R., and Cobban, W. A., 1966, The Red Bird section of the Upper Cretaceous Pierre Shale in Wyoming, U. S. Geol. Surv. Prof. Pap. 393-A: 1–75.Google Scholar
  26. Gómez, J. J., and Fernandez-Lopez, S., 1994, Condensation process in shallow platforms, Sediment. Geol. 92: 147–159.CrossRefGoogle Scholar
  27. Greenwald, L., and Ward, P. D., 1987, Buoyancy in Nautilus, in: Nautilus—The Biology and Paleobiology of a Living Fossil ( W. B. Saunders and N. H. Landman, eds.), Plenum Press. New York, pp. 547–560.Google Scholar
  28. Hagdorn, H., and Mundlos, R., 1983, Aspekte der Taphonomie von Muschelkalk-Cephalopoden. Teil 1. Siphozerfall und Füllmechanismus, N. Jb. Geol. Paläont. Abh. 166: 369–403.Google Scholar
  29. Hallam, A., 1969, Faunal realms and facies in the Jurassic, Palaeontology 12: 1–18.Google Scholar
  30. Hamada, T., 1977, Distribution and some ecological barriers of modern Nautilus species, Sci. Pap. Coll. Gen. Educ. Univ. Tokyo 27: 89–102.Google Scholar
  31. Hanai, T., and Oji, T., 1981, Early Cretaceous beachrock from the Miyako Group, northeast Japan, Proc. Jpn. Acad. 57 (B): 362–367.CrossRefGoogle Scholar
  32. Hanai, T., Obata, I., and Hayami, I., 1968, Notes on the Cretaceous Miyako Group, Mem. Nat. Sci. Mus. (Tokyo) 1: 20–28 (in Japanese with English abstract).Google Scholar
  33. Hewitt, R. A., and Westermann, G. E. G., 1990, Mosasaur tooth marks on the ammonite Placenticeras from the Upper Cretaceous Bearpaw Formation of Alberta, Can. J. Earth Sci. 27: 469–472.CrossRefGoogle Scholar
  34. Henderson, R. A., and McNamara, K. J., 1985, Taphonomy and ichnology of cephalopod shells in a Maastrichtian chalk from Western Australia, Lethaia 18: 305–322.CrossRefGoogle Scholar
  35. Hollman, R., 1962, Über die Subsolution und die “Knollenkalke” des Calcare Ammonitico Rosso Superiore im Monte Baldo (Malm, Norditalien), N. Jb. Geol. Paläont. Mh. 1962: 1963–1972.Google Scholar
  36. Jacobs, D. K., 1992, The support of hydrostatic load in cephalopod shells: Adaptive and ontogenetic explanations of shell form and evolution from Hooke 1695 to the present, in: Evolutionary Biology, Vol. 26 ( M. K. Hecht, B. Wallace, and R. J. Maclntyre, eds.), Plenum Press, New York, pp. 287–349.CrossRefGoogle Scholar
  37. Jenkyns, S. 0., 1985, The early Toarcian and Cenomanian–Turonian anoxic events in Europe: Comparisons and contrasts, Geol. Rundsch. 74: 505–518.CrossRefGoogle Scholar
  38. Jenkyns, S. 0., 1988, The early Toarcian (Jurassic) anoxic event: Stratigraphic. sedimentary. and geochemical evidence, Am. J. Sci. 288: 101–151.CrossRefGoogle Scholar
  39. Kase, T., Shigeta. Y., and Futakami. M., 1994, Limpet home depressions in Cretaceous ammonites, Lethaia 27: 49–58.CrossRefGoogle Scholar
  40. Kauffman, E G, 1978, Benthic environments and paleoecology of the Posidonienschiefer (Toarcian), N. Jb. Geol. Paläont. Abh. 157: 18–36.Google Scholar
  41. Kauffman, E. G., 1990, Mosasaur predation on ammonites during the Cretaceous: An evolutionary history, in: EvolutionaryPaleobiology of Behavior and Coevolution ( A. J. Boucot, ed.), Elsevier, New York, pp. 184–189.Google Scholar
  42. Kauffman, E. G., and Kesling, R., 1960, An Upper Cretaceous ammonite bitten by a mosasaur (South Dakota), Univ. Mich. Mus. Pal. Contrib. 15: 193–248.Google Scholar
  43. Kennedy, W. J., and Cobban, W. A., 1976, Aspects of ammonite biology, biogeography, and biostratigraphy, Spec. Pap. Palaeontol. 17: 1–94.Google Scholar
  44. Kidwell, S. M., 1986, Models for fossil concentrations: Paleobiologic implications, Paleobiology 12: 6–24.Google Scholar
  45. Kidwell, S. M., Fürsich, F. T., and Aigner, T., 1986, Conceptual framework for the analysis and classification of fossil concentrations, Palaios 1: 228–238.CrossRefGoogle Scholar
  46. Kidwell, S. M., and Jablonski, D., 1983, Taphonomic feedback—Ecological consequences of shell accumulation, in: Biotic Interactions in Recent and Fossil Benthic Communities ( M. J. S. Tevesz and P. L. McCall, eds.), Plenum Press, New York, pp. 195–248.Google Scholar
  47. Landman, N. H., Saunders, W. B., Winston, J. E., and Harries, P. J., 1987, Incidence and kinds of epizoans on the shells of live Nautilus, in: Nautilus—The Biology and Paleobiology of a Living Fossil ( W. B. Saunders and N. H. Landman, eds.), Plenum Press, New York, pp. 163–177.Google Scholar
  48. Lehmann, U., 1966, Ammoniten mit Kieferapparat und Radula aus Lias-Gehäusen, Paläontol. Z. 44: 25–31.Google Scholar
  49. Lehmann, U. 1971, Jaws, radula, and crop of Arnioceras (Ammonoidea), Palaeontology 14: 338-341.Google Scholar
  50. Lehmann. U. 1972, Aptychen als Kieferelemente der Ammoniten, Paläontol. Z. 46: 34–48.Google Scholar
  51. Lehmann, U. 1975, Über Nahrung und Ernährungsweise von Ammoniten, Paläontol. Z. 49: 187–195.Google Scholar
  52. Lehmann, U. 1976, Ammoniten: Ihr Leben und ihre Umwelt, Ferdinand Enke Verlag, StuttgartGoogle Scholar
  53. Lehmann, U., 1981, Ammonite jaw apparatus and soft parts, in: The Ammonoidea, Systematics Association Spec. Vol. 18 ( M. R. House and J. R. Senior, eds.), Academic Press, London, pp. 275–287.Google Scholar
  54. Lehmann, U., and Weitschat, W., 1973, Zur Anatomie und Ökologie von Ammoniten: Funde von Kropf und Kiemen. Paläontol. Z. 47: 69–76.Google Scholar
  55. Maeda, H., 1987, Taphonomy of ammonites from the Cretaceous Yezo Group in the Tappu area, northwestern Hokkaido, Japan, Trans. Proc. Palaeont. Soc. Jpn. N.S. 148: 285–305.Google Scholar
  56. Maeda, H., 1990, Mechanism of fossilization: Introduction to taphonomy, Kagaku 60: 159–163Google Scholar
  57. Maeda, H., 1991, Sheltered preservation: A peculiar mode of ammonite occurrence in the Cretaceous Yezo Group, Hokkaido, north Japan, Lethaia 24: 69–82.CrossRefGoogle Scholar
  58. Mapes, R. H., 1987, Upper Paleozoic cephalopod mandibles: Frequency of occurrence, modes of preservation, and paleoecological implications, J. Paleontol. 61: 521–538.Google Scholar
  59. Matsumoto, T., 1942, Fundamentals on the Cretaceous stratigraphy of Japan. Part I. Mem. Fac. Sci. Kyushu Imp. Univ. (D) 1: 130–280.Google Scholar
  60. Matsumoto, T., and Okada, H., 1973, Saku Formation of the Yezo geosyncline, Sci. Rep. Dep. Kyushu Univ. (Geol.) 11: 275–309 (in Japanese with English abstract).Google Scholar
  61. Matsushima, Y., 1990, Nautilus pompilius drifts on the northeast coast of Sumba Island, Indonesia, Bull. Kanagawa Prefect. Mus. Nat. Sci. 19: 33–43.Google Scholar
  62. Minato, M., 1953, Sedimentary Geology, Iwanami Book Co., TokyoGoogle Scholar
  63. Mundlos, R., 1970, Wohnkammerfüllung bei Ceratitengehäusen, N. Jb. Geol. Paldont. Mh. 1970: 18–27.Google Scholar
  64. Mutvei, H., and Reyment, R. A., 1973, Buoyancy control and siphuncle function in ammonoids, Palaeontology 16: 623–636.Google Scholar
  65. Neumann. N., Schumann, D., and Wendt, J., 1976, Geosynklinale Knollenkalke, Zentralbi. Geol. Paläontol. 2: 358–360.Google Scholar
  66. Ohana, T., and Kimura, T., 1991, Permineralized Otozamites leaves (Bennettitales) from the Upper Cretaceous of Hokkaido, Japan, Trans. Proc. Palaeont. Soc. Jpn. N.S. 164: 944–963.Google Scholar
  67. Ohta, S., 1983, Photographic census of large-sized benthic organisms in the bathyal zone of Suruga Bay, central Japan, Bull. Ocean Res. Inst. Univ. Tokyo 15: 1–155.Google Scholar
  68. Okada, H., 1983, Collision orogenesis and sedimentation in Hokkaido, Japan, in: Accretion Tectonics in the Circum-Pacific Regions ( M. Hashimoto and S. Uyeda, eds.), Terrapub, Tokyo, pp. 91–105.CrossRefGoogle Scholar
  69. Okamoto, T., 1988, Changes in life orientation during the ontogeny of some heteromorph ammonoids, Palaeontolo 31: 281–294.Google Scholar
  70. Onuki, Y., and Bando, Y., 1959, On the Inai Group of the Lower and Middle Triassic System (stratigraphical and paleontological studies of the Triassic System in the Kitakami Massif, northeast Japan:-3), Contrib. Inst. Geol. Paleontol. Tohoku Univ. 50: 1–69 ).Google Scholar
  71. Otto, M., 1994, Zur Frage der “Weichteilerhaltung” im Hunsrückschiefer. Geol. Palaeontol. 28: 45–63.Google Scholar
  72. Prévôt, L., and Lucas, J., 1990, Phosphate, in: Palaeoniology—A Synthesis ( D. E. G. Briggs and P. R. Crowther, eds.), Blackwell Science Publications, Oxford, pp. 256–257.Google Scholar
  73. Raiswell, R., 1976, The microbiological formation of carbonate concretions in the Upper Lias of N. E. England, Chem. Geol. 18: 227–244.CrossRefGoogle Scholar
  74. Raup, D. M., 1973, Depth inferences from vertically embedded cephalopods, Lethaia 6: 217–226.CrossRefGoogle Scholar
  75. Raup, D. M., and Chamberlain, J. A., Jr., 1967, Equations for volume and center of gravity in ammonoid shells, J. Paleontol. 41: 566–574.Google Scholar
  76. Reeside, J. B., and Cobban, W. A., 1960, Studies of the Mowry Shale (Cretaceous) and contempo-rary formations in the United States and Canada, U.S. Geol. Surv. Prof. Pap. 355: 1–126.Google Scholar
  77. Reitner, J., and Urlichs, M., 1983, Echte Weichteilbelemniten aus dem Untertoarcium (Posi-donienschiefer) Südwestdeutschlands, N. Jb. Geol. Paläont. Abh. 165: 450–465.Google Scholar
  78. Renz, O., 1979, Lower Cretaceous Ammonoidea from the northern Atlantic, Leg 47B, Hole 398D, D.S.D.P., Mit. Rep. DSDP 47: 361–365.Google Scholar
  79. Reyment, R. A., 1958, Some factors in the distribution of fossil cephalopods, Stock. Contrib. Geol. 1: 97–184.Google Scholar
  80. Reyment, R. A., 1973, Factors in the distribution of fossil cephalopods. Part 3. Experiments with exact models of certain shell types, Bull. Geol. Inst. Univ. Upps. N.S. 4: 7–41.Google Scholar
  81. Rothpletz, A., 1909, Über die Einbettung der Ammoniten in den Solnhofener Schichten, Koningl. Bayer. Akad. Wiss. Abh. 24 (2): 311–337.Google Scholar
  82. Roux, M., 1990, Underwater observations of Nautilus macromphalus off New Caledonia, Chambered Nautilus Newsl. 60.Google Scholar
  83. Roux, M., Bouchet, P., Bourseau, J. P., Gaillard, C., Grandperrin, R., Guille, A., Laurin B., Monniot, C., Richer de Forges, B., Rio, M., Segonzac, M., Vacelet, J., and Zibrowius, H., 1991, L’environnement bathyal au large de la Nouvelle-Calédonie: Résultes préliminaires de la campagne CALSUB et conséquences paléoécologiques, Bull. Soc. Geol. Fr. 162: 675–685.Google Scholar
  84. Schindewolf, O. H., 1934, Über Epöken auf Cephalopoden-Gehäusen, Palëontol. Z. 16: 15–31.Google Scholar
  85. Schlanger, S. O., and Jenkyns, H. C.. 1976, Cretaceous oceanic anoxic events: Causes and consequences, Geol. Mijnbouw 55: 179–185.Google Scholar
  86. Scott, G., 1940, Paleontological factors controlling the distribution and mode of life of Cretaceous ammonoids in the Texas area, J. Paleontol. 14: 299–323.Google Scholar
  87. Seilacher, A., 1960, Epizoans as a key to ammonoid ecology, J. Paleontol. 34: 189–193Google Scholar
  88. Seilacher, A., 1963, Umlagerung und Rolltransport von Cephalopoden-Gehäusen, N. lb. Geol. Paläont. Mh. 1963: 593–615.Google Scholar
  89. Seilacher, A., 1966, Lobenlibellen und Füllstruktur bei Ceratiten, N. Jb. Geol. Paläont. Abh. 125: 480–488.Google Scholar
  90. Seilacher, A., 1968, Sedimentationprozesse im Ammoniten gehäusen, Akad. Wiss. Lit. Abh. Math. Naturwiss. Kl. 1967 (9): 191–203.Google Scholar
  91. Seilacher, A., 1970, Begriff und Bedeutung der Fossil-Lagerstätten, N. Jb. Geol. Paläont. Mh. 1970: 34–39.Google Scholar
  92. Seilacher, A., 1971, Preservational history of ceratite shells, Palaeontology 14: 16–21.Google Scholar
  93. Seilacher, A., 1982, Ammonite shells as habitats in the Posidonia Shale—floats or benthic islands? N. Jb. Geol. Paläont. Mh. 1982: 98–114.Google Scholar
  94. Seilacher, A., 1988, Schlangensterne (Aspidura) als Schlüssel zur Entstehungsgeschichte des Muschelkalks, in: Neue Forschungen zur Erdgeschichte von Crailsheim, Vol. 1 ( H. Hagdorn, ed.), Goldschneck Verlag, Stuttgart, pp. 85–98.Google Scholar
  95. Seilacher, A., Andalib, F., Dietl, G., and Gocht, H., 1976, Preservational history of compressed Jurassic ammonites from Southern Germany, N. Jb. Geol. Paläont. Abh. 152: 303–356.Google Scholar
  96. Seilacher, A., and LaBarbera, M., 1995, Ammonites as cartesian divers, Palaios 10: 493–506.CrossRefGoogle Scholar
  97. Seilacher, A., Reif, W. E., and Westphal, F., 1985, Sedimentological, ecological, and temporal patterns of fossil Lagerstätten, Phil. Trans. R. Soc. Lond. B311: 5–23.CrossRefGoogle Scholar
  98. Shigeta, Y., 1993, Post-hatching early life history of Cretaceous Ammonoidea, Lethaia 26: 133–145.CrossRefGoogle Scholar
  99. Shikama, T., and Hirano, H., 1970, On the mode of occurrence of ammonites in the Nishinakayama Formation, Toyora Group, Sci. Rep. Yokohama Nat. Univ. Second Sect. 16: 61–71.Google Scholar
  100. Shimizu, S., 1931, The marine Lower Cretaceous deposits of Japan, with special reference to the ammonites-bearing zones, Sci. Rep. Tohoku Imp. Univ. Second Ser. 15: 1–40.Google Scholar
  101. Stürmer, W. 1969, Pyrit-Erhaltung von Weichteilen bei devonischen Cephalopoden, Paläontol. Z. 43: 10–12.Google Scholar
  102. Tanabe, K., 1979, Palaeoecological analysis of ammonoid assemblages in the Turonian Scaphites facies of Hokkaido, Palaeontology 22: 609–630.Google Scholar
  103. Tanabe, K., 1983a, Mode of life of an inoceramid bivalve from the Lower Jurassic of west Japan, N. Jb. Geol. Paläont. Mh. 1983: 419–428.Google Scholar
  104. Tanabe, K., 1983b, The jaw apparatuses of Cretaceous desmoceratid ammonites, Palaeontology 26: 677–686.Google Scholar
  105. Tanabe, K., 1991, Early Jurassic macrofauna of the oxygen-depleted epicontinental marine basin in the Toyora area, west Japan, Saito Ho-on Kai Spec. Pub. 3: 147–161.Google Scholar
  106. Tanabe, K., Inazumi, A., Ohtsuka, Y., Katsuta, T., and Tamahama, K 1982, Litho-and biofacies and chemical composition of the Lower Jurassic Nishinakayama Formation (Toyora Group) in west Japan, idem. Ehime Univ. Sci. Ser. D 9: 47–62 (in Japanese with English abstract).Google Scholar
  107. Tanabe, K., Inazumi, A., Tamahama, K., and Katsuta, T., 1984, Taphonomy of half and compressed ammonites from the Lower Jurassic black shales of the ‘Toyora area, west Japan, Palaeogeogr. Palaeoclimatol. Palaeoecol. 47:329–346Google Scholar
  108. Tanabe, K., Landman, N. H., and Weitschat, W., 1993, Septal necks in Mesozoic Ammonoidea: Structure, ontogenetic development, and evolution, in: The Ammonoidea: Environment, Ecology, and Evolutionary Change, Systematics Association Spec. Vol. 47 ( M. R. House, ed.), Clarendon Press, Oxford, pp. 57–84.Google Scholar
  109. Taylor, P. D., 1979, Paleoecology of the encrusting epifauna of some British Jurassic bivalves, Palaeogeogr. Palaeoclimatol. Palaeoecol. 28: 241–262.CrossRefGoogle Scholar
  110. Toriyama, R., Sato, T., and Hamada, T., 1966, Nautilus pompilius drifts on the coast of Thailand, Jpn. J. Geol. Geogr. 36: 149–161.Google Scholar
  111. Trueman, A. E., 1941, The ammonite body chamber, with special reference to the buoyancy and mode of life of the living ammonite, Geol. Soc. Lond. Q. J. 96: 339–383.CrossRefGoogle Scholar
  112. Ward, P. D., 1987, The Natural History of Nautilus, Allen and Unwin, Boston.Google Scholar
  113. Ward, P. D., and Westermann, G. E. G., 1977, First occurrence, systematics and functional morphology of Nipponites from the Americas, J. Paleontol. 51: 367–372.Google Scholar
  114. Ward, P. D., and Westermann, G. E. G., 1985, Cephalopod paleoecology, in: Mollusks, Notes for a Short Course, University of Tennessee Studies in Geology, Vol. 13 (D. J. Bottjer, C. S. Hickman, and P. D. Ward, eds.), University of Tennessee, Knoxville Publication, Knoxville, pp. 215–229Google Scholar
  115. Wendt, J., 1971, Genese und Fauna submariner sedimentärer Spaltenfüllungen im mediterranen Jura, Paläontogr. A 136: 121–192.Google Scholar
  116. Wendt, J., 1973, Cephalopod accumulations in the Middle Triassic Hallstatt-Limestone of Yugoslavia and Greece, N. Jb. Geol. Paläont. Mh. 1973: 624–640.Google Scholar
  117. Wendt, J., and Aigner, T., 1982, Condensed Griotte facies and cephalopod accumulation in the Upper Devonian of the eastern Anti-Atlas, Morocco, in: Cyclic and Event Stratification ( G. Einsle and A. Seilacher, eds.), Springer-Verlag, Berlin, pp. 326–332.CrossRefGoogle Scholar
  118. Westermann, G. E. G., 1977, Form and function of orthoconic cephalopod shells with concave septa, Paleobiology 3: 300–321.Google Scholar
  119. Westermann, G. E. G., 1985, Post-mortem descent with septal implosion in Silurian nautiloids, Paläontol. Z. 59: 79–97.Google Scholar
  120. Wright, C. W., and Kennedy, W. J., 1981, The Ammonoidea of the Plenus Marls and the Middle Chalk, Palaeontogr. Soc. Monogr., No. 560: 1–148.Google Scholar
  121. Wright, C. W., and Kennedy, W. J., 1984, The Ammonoidea of the Lower Chalk I Palaeontogr. Soc. Monogr., No. 567: 1–126.Google Scholar
  122. Zeiss, A., 1969, Weichteile ectocochleater paläozoischer Cephalopoden in Röntgenaufnahmen und ihre paläontologische Bedeutung, Paldontol. Z. 43:13–27Google Scholar
  123. Ziegler, B., 1967, Ammoniten-Ökologie am Beispiel des Oberjura, Geol. Rundsch. 56: 439–464.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Haruyoshi Maeda
    • 1
  • Adolf Seilacher
    • 2
  1. 1.Department of Geology and Mineralogy, Faculty of ScienceKyoto UniversityKyotoJapan
  2. 2.Kline Geology LaboratoryYale UniversityNew HavenUSA

Personalised recommendations