Skip to main content

Mode and Rate of Growth in Ammonoids

  • Chapter
Ammonoid Paleobiology

Part of the book series: Topics in Geobiology ((TGBI,volume 13))

Abstract

In this chapter we discuss the mode and rate of growth in ammonoids, focusing primarily on postembryonic growth. We first discuss the general mode of growth and then describe the ontogenetic sequence of growth stages. These stages are recognized on the basis of changes in morphology. For example, a gràph of the increase in size of whorl width versus shell diameter in an individual reveals changes through ontogeny that pinpoint the end of one growth stage and the beginning of another. We next discuss the overall rate of growth through ontogeny and establish a generalized growth curve. In this discussion, we refer to other cephalopods whose rate of growth is known. Fluctuations in the rate of growth that are superimposed on this growth curve are indicated in ammonoids by the presence of such shell features as varices and constrictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arkell, W. J., Kummel, B., and Wright, C. W., 1957, Mesozoic Ammonoidea, in: Treatise on Invertebrate Paleontology. Part L, Moll usco 4 ( R. C. Moore, ed.), Geological Society of America and University of Kansas Press, Lawrence, KS, pp. 80–465.

    Google Scholar 

  • Bandel, K., Landman, N. H., and Waage, K. M., 1982, Micro-ornament on early whorls of Mesozoic ammonites: Implications for early ontogeny, J. Paleont. 56 (2): 386–391.

    Google Scholar 

  • Bayer, U., 1972a. Zur Ontogenie und Variabilität des jurassischen Ammoniten Leioceras opalinum, N. Jb. Geol. Paläont. Abh. 140: 306–327.

    Google Scholar 

  • Bayer, U., 1972b, Ontogenie der liassischen Ammonitengattung Bifericeras, Paläontol. Z. 46: 225–241.

    Google Scholar 

  • Bayer, U., 1977, Cephalopoden-Septen. Teil 2. Regelmechanismen im Gehäuse-und Septenbau der Ammoniten, N. Jb. Geol. Paläont. Abh. 155: 162–215.

    Google Scholar 

  • Birkelund, T., 1981, Ammonoid shell structure, in: The Ammonoidea, Systematics Association Spec. Vol. 18 ( M. R. House and J. R. Senior, eds.), Academic Press, London, pp. 177–214

    Google Scholar 

  • Blind, W., and Jordan, R., 1979, “Septen-Gabelung” an einer Dorsetensia romani (Oppel) aus dem nordwestdeutschen Dogger, Paläontol. Z. 53:137–141.

    Google Scholar 

  • Bogoslovsky, B. I., 1982, An interesting form of apertural formation in the shell of clymeniids, Dokl. Akad. Nauk SSSR 264 (6): 1483–1486

    Google Scholar 

  • Boletzky, S. v., 1983, Sepia officinalis, in: Cephalopod Life Cycles, Vol. I (P. R. Boyle, ed.), Academic Press, New York, pp. 31–52.

    Google Scholar 

  • Boucot, A. J., 1953, Life and death assemblages among fossils, Am. J. Sci. 251: 25–40.

    Google Scholar 

  • Boyle, P. R., and Thorpe, R. S., 1984, Optic gland enlargement and female gonad maturation in a population of the octopus Eledone cirrhosa: A multivariate analysis, Mar. Biol. 79: 127–132

    Google Scholar 

  • Brett, C. E., and Seilacher, A., 1991, Fossil Lagerstätten: A taphonomic consequence of event sedimentation, in: Cycles and Events in Stratigraphy ( G. Einsele, W. Ricken, and A. Seilacher, eds.), Springer-Verlag, New York, pp. 283–297.

    Google Scholar 

  • Buchardt, B., and Weiner, S., 1981, Diagenesis of aragonite from Upper Cretaceous ammonites: A geochemical case-study, Sedimentology 28: 423–438.

    CAS  Google Scholar 

  • Bucher, H., and Guex, J., 1990, Rythmes de croissance chez les ammonites triasiques, Bull. Soc. Vaudoise Sci. Nat. 80 (2): 191–209.

    Google Scholar 

  • Callomon, J. H., 1963, Sexual dimorphism in Jurassic ammonites, Trans. Leicester Lit. Phil. Soc. 57: 21–56.

    Google Scholar 

  • Callomon, J. H., 1981, Dimorphism in ammonoids, in: The Ammonoidea, Systematics Association Spec. Vol. 18 ( M. R. House and J. R. Senior, eds.), Academic Press, London, pp. 257–273

    Google Scholar 

  • Callomon, J. H., 1985, The evolution of the Jurassic ammonite family Cardioceratidae, Spec. Pap. Palaeont. 33: 49–90.

    Google Scholar 

  • Carlson, B., Awai, M., and Arnold, J., 1992, Waikiki Aquarium’s Chambered Nautilus reach their first “Hatch-day” anniversary, Hawaiian Shell News 40(1): 1, 3–4.

    Google Scholar 

  • Carriker, M. R., 1972, Observations on removal of spines by muricid gastropods during shell growth, Veliger 15: 69–74.

    Google Scholar 

  • Chamberlain, J. A., Jr., 1978, Permeability of the siphuncular tube of Nautilus: Its ecologic and paleoecologic implications, N. Jb. Geol. Paläont. Mh. 3: 129–142.

    Google Scholar 

  • Checa, A., 1987, Morphogenesis in ammonites—differences linked to growth pattern, Lethaia 20: 141–148.

    Google Scholar 

  • Checa, A., 1994, A model for the morphogenesis of ribs in ammonites inferred from associated microsculptures, Palaeontology (Lond.) 37 (4): 863–888.

    Google Scholar 

  • Checa, A., and Martin-Ramos, D., 1989, Growth and function of spines in the Jurassic ammonite Aspidoceras, Palaeontology (Lond.) 32: 645–655.

    Google Scholar 

  • Checa, A., and Sandoval, J., 1989, Septal retraction in Jurassic Ammonitina, N. Jb. Geol. Paläont. Mh. 4: 193–211.

    Google Scholar 

  • Checa, A., and Westermann, G. E. G., 1989, Segmental growth in planulate ammonites: Inferences on costal function, Lethaia 22: 95–100.

    Google Scholar 

  • Clausen, C.-D., 1968, Oberdevonische Cephalopoden aus dem Rheinischen Schiefergebirge. I. Orthocerida, Bactritida, Palaeontogr. Abt. A 128: 1–86.

    Google Scholar 

  • Cobban, W. A., 1951, Scaphitoid cephalopods of the Colorado group, U.S. Geol. Surv. Prof. Pap. 239: 1–42.

    Google Scholar 

  • Collins, D, and Ward, P. D., 1987, Adolescent growth and maturity, in: Nautilus—The Biology and Paleobiology of a Living Fossil ( W. B. Saunders and N. H. Landman, eds.), Plenum Press, New York, pp. 421–432.

    Google Scholar 

  • Collins, D., Ward, P. D., and Westermann, G. E. G., 1980, Function of cameral water in Nautilus, Paleobiology 6: 168–172.

    Google Scholar 

  • Cowen, R., Gertman, R., and Wright, G., 1973, Camouflage patterns in Nautilus and their implications for cephalopod paleobiology, Lethaia 6: 201–213.

    Google Scholar 

  • Crick, R. E., 1978, Morphological variations in the ammonite Scaphites of the Blue Hill Member, Carlile Shale, Upper Cretaceous, Kansas, Univ. Kans. Paleontol. Contrib. Pap. 88: 1–28

    Google Scholar 

  • Currie, E. D., 1942, Growth changes in the ammonite Promicroceras marstonense Spath, Proc. R. Soc. Edinb. Sect. B 61: 344–367.

    Google Scholar 

  • Currie, E. D., 1943, Growth stages in some species of Promicroceras, Geol. Mag. 80: 15–22.

    Google Scholar 

  • Currie, E. D., 1944, Growth stages in some Jurassic ammonites, Trans. R. Soc. Edinb. 61: 171–198.

    Google Scholar 

  • Davis, R. A., 1972, Mature modification and dimorphism in selected Late Paleozoic ammonoids, Bull. Am. Paleont. 62 (272): 27–130.

    Google Scholar 

  • Deevey, E. S., 1947, Life tables for natural populations of animals, Q. Rev. Biol. 22: 283–314.

    PubMed  Google Scholar 

  • Denton, E., and Gilpin-Brown, J., 1966, On the buoyancy of the pearly Nautilus, J. Mar. Biol. Assoc. U.K. 46: 723–759.

    Google Scholar 

  • Diener, C., 1895, Himalayan fossils—the Cephalopoda of the Muschelkalk, Palaeont. Indica Ser. 15, 112: 1–118.

    Google Scholar 

  • Doguzhaeva, L., 1982. Rhythms of ammonoid shell secretion, Lethaia 15: 385–394.

    Google Scholar 

  • Doguzhaeva, L. A., 1988, Siphuncular tube and septal necks in ammonite evolution, in: Cepha-lopods—Present and Past ( J. Wiedmann and J. Kullmann, eds.), Schweïzerbart’sche Ver-lagsbuchhandlung, Stuttgart, pp. 291–302.

    Google Scholar 

  • Dommergues, J.-L., 1988, Can ribs and septa provide an alternate standard for age in ammonite ontogenetic studies?, Lethaia 21: 243–256.

    Google Scholar 

  • Druschits, V. V., Doguzhaeva, L. A., and Mikhailova, I. A., 1977, The structure of the ammonitella and the direct development of ammonites, Paleontol. J. 11 (2): 188–199.

    Google Scholar 

  • Elmi, S., and Benshili, K., 1987, Relation entre la structuration tectonique, la composition des peuplements et l’évolution; exemple du Toarcien du Moyen-Atlas méridional (Maroc), Boll. Soc. Paleontol. Ital. 26: 47–62.

    Google Scholar 

  • Engeser, T. S., 1990, Major events in cephalopod evolution, in: Major Evolutionary Radiations, Systematics Association Spec. Vol. 42 ( P. D. Taylor and G. P. Larwood, eds.), Clarendon Press, Oxford, pp. 119–138.

    Google Scholar 

  • Fagerstrom, J. A., 1964, Fossil communities in paleoecology: Their recognition and significance, Geol. Soc. Am. Bull. 75: 1197–1216.

    Google Scholar 

  • Forester, R. W., Caldwell, W. G. E., and Oro, E. H., 1977, Oxygen and carbon isotopic study of ammonites from the Late Cretaceous Bearpaw Formation in southwestern Saskatchewan, Can. J. Earth Sci. 14: 2086–2100.

    CAS  Google Scholar 

  • Forsythe, J. W., and Van Heukelem, W. F, 1987, Growth, in: Cephalopod Life Cycles, Vol. II ( P. R. Boyle, ed.), Academic Press, New York, pp. 135–156.

    Google Scholar 

  • Geary, D. H., Breiske, T. A., and Bemis, B. E., 1992, The influence and interaction of temperature, salinity, and upwelling on the stable isotopic profiles of strombid gastropod shells, Palaios 7: 77–85.

    Google Scholar 

  • Gould, S. J., 1966, Allometry and size in ontogeny and phylogeny, Biol. Rev. 41: 587–640.

    PubMed  CAS  Google Scholar 

  • Gould, S. J., 1977, Ontogeny and Phylogeny, Belknap Press, Harvard University, Cambridge, MA. Grossman, E. L., and Ku, T. L., 1986, Oxygen and carbon isotope fractionation in biogenic aragonite: Temperature effects, Chem. Geol. 59: 59–72.

    Google Scholar 

  • Guex, J., 1970, Sur les moules internes des Dactyliocératides, Bull. Lab. Geol. Mineral. Geophys. Mus. Geol. Univ. Lausanne 70 (182): 1–7.

    Google Scholar 

  • Heptonstall, W., 1970. Buoyancy control in ammonoids, Lethaia 3: 317–328.

    Google Scholar 

  • Hewitt, R. A., 1985, Numerical aspects of sutural ontogeny in the Ammonitina and Lytoceratina, N. Jb. Geol. Paläont. Abh. 170 (3): 273–290.

    Google Scholar 

  • Hewitt, R. A., 1986, Terminology of ammonoid coiling equations, Lethaia 19: 338.

    Google Scholar 

  • Hewitt, R. A., 1988, Significance of early septal ontogeny in ammonoids and other ectocochliates, in: Cephalopods—Present and Past ( J. Wiedmann and J. Kullmann, eds.), Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp. 207–214.

    Google Scholar 

  • Hewitt, R. A., and Hurst, J. M., 1977, Size changes in Jurassic liparoceratid ammonites and their stratigraphical and ecological significance, Lethaia 10: 287–301.

    Google Scholar 

  • Hewitt, R. A., and Hurst, J. M., 1983, Aspects of the ecology of actinocerid cephalopods, N. Jb. Geol. Paläont. Abh. 165 (3): 362–377.

    Google Scholar 

  • Hewitt, R. A., and Stait, B., 1988, Seasonal variation in septal spacing of Sepia officinalis and some Ordovician actinocerid nautiloids, Lethaia 21: 383–394.

    Google Scholar 

  • Hewitt, R. A., and Watkins, R., 1980, Cephalopod ecology across a late Silurian shelf tract, N. Jb. Geol. Paläont. Abh. 160 (1): 96–117.

    Google Scholar 

  • Hewitt, R. A., and Westermann, G. E. G., 1987, Function of complexly fluted septa in ammonoid shells, II, Septal evolution and conclusions, N. Jb. Geol. Paläont. Abh. 174 (2): 135–169

    Google Scholar 

  • Hewitt, R. A., Checa, A., Westermann, G. E. G., and Zaborski, P. M., 1991, Chamber growth in ammonites inferred from color markings and naturally etched surfaces of Cretaceous vasco-ceratids from Nigeria, Lethaia 24: 271–287.

    Google Scholar 

  • Hewitt, R. A., Westermann, G. E. G., and Checa, A., 1993, Growth rates of ammonites estimated from aptychi, Geobios Mem. Spec. 15: 203–208.

    Google Scholar 

  • Hirano, H., 1981, Growth rates in Nautilus macromphalus and ammonoids: Its implications, in: International Symposium on Conceptions and Methods in Paleontology, Barcelona ( J. Martinell, ed.), University of Barcelona, Barcelona, pp. 141–146.

    Google Scholar 

  • House, M. R., 1965, A study in the Tornoceratidae: The succession of Tornoceras and related genera in the North American Devonian, Phil. Trans. R. Soc. Lond. B 250 (763): 79–130

    Google Scholar 

  • Howarth, M. K., 1992, The ammonite family Hildoceratidae in the Lower Jurassic of Britian, Part 1, Palaeontologr. Soc. Monogr. (Land.) 145: 1–106.

    Google Scholar 

  • Hutchinson, G. E., 1978, An Introduction to Population Ecology, Yale University Press, New Haven.

    Google Scholar 

  • Hyatt, A., 1894, Phylogeny of an acquired characteristic, Proc. Am. Philos. Soc. 32 (143): 349–647

    Google Scholar 

  • Ivanov, A. N., 1971, On the problem of periodicity of the formation of septa in ammonoid shells and in that of other cephalopods, Uch. Zap. Yarvsl. Pedagog. Inst. Geol. Paleontol. 87: 127–130

    Google Scholar 

  • Ivanov, A. N., 1975, Late ontogeny in ammonites and its characteristics in micro-, macro-and megaconchs, Yarosl. Pedagog. Inst. Sb. Nauchn. Tr. 142: 5–57.

    Google Scholar 

  • Jacobs, D. K., 1992, Shape. drag, and power in ammonoid swimming, Paleobiologyl 8 (2): 203–220.

    Google Scholar 

  • Jacobs. D. K., and Landman. N. H., 1993, Nautilusa poor model for the function and behavior of ammonoids? Lethaia 26: 101–111.

    Google Scholar 

  • Jacobs, D. K., Landman, N. H.. and Chamberlain, J. A., Jr., 1994, Ammonite shell shape covaries with facies and hydrodynamics: Iterative evolution as a response to changes in basinal environment. Geology 22: 905–908.

    Google Scholar 

  • Jordan, R., and Stahl, W., 1970. Isotopische Paläotemperatur-Bestimmungen an jurassischen Ammoniten und grundsätzliche Voraussetzungen für diese Methode, Geol. Jb. 89: 33–62.

    Google Scholar 

  • Kahn, P. G. K., and Pompea, S. M., 1978, Nautiloid growth rhythms and dynamical evolution of the Earth–Moon system, Nature 275: 606–611.

    Google Scholar 

  • Kant, R., 1973a, “Knickpunkte” im allometrischen Wachstum von Cephalopoden-Gehäusen, N. Jb. Geol. Paläont. Abh. 142(1):97–114.

    Google Scholar 

  • Kant, R., 1973b, Allometrisches Wachstum paläozoischer Ammonoideen: Variabilität und Korrelation einiger Merkmale. N. Jb. Geol. Paläont. Abh. 143 (2): 153–192.

    Google Scholar 

  • Kant, R., 1973c, Untersuchungen des allometrischen Gehäusewachstums paläozoischer Ammonoideen unter besonder Berücksichtigung einzelner “Populationen,” N. Jb. Geol. Paläont. Abh. 144 (2): 206–251.

    Google Scholar 

  • Kant, R., and Kullmann, J., 1973, “Knickpunkte” im allometrischen Wachstum von Cephalopoden-Gehäuse, N. Jb. Geol. Paläont. Abh. 142:7–114.

    Google Scholar 

  • Kemper, E., and Wiedenroth, K., 1987, Klima und Tier-Migrationen am Beispiel der frühkretazischen Ammoniten Nordwestdeutschlands, Geol. Jahr. A 96: 315–363.

    Google Scholar 

  • Kennedy, W. J., 1988, Late Cenomanian and Turonian ammonite faunas from north-east and central Texas, Spec. Pap. Palaeontol. 39: 1–131.

    Google Scholar 

  • Kennedy, W. J., and Cobban, W. A., 1976, Aspects of ammonite biology, biogeography, and biostratigraphy, Spec. Pap. Palaeontol. 17: 1–94.

    Google Scholar 

  • Kidwell, S. M., and Bosence, D. W. J., 1991, Taphonomy and time-averaging of marine shelly faunas, in: Taphonomy—Releasing the Data Locked in the Fossil Record ( P. A. Allison and D. E. G. Briggs, eds.), Plenum Press, New York, pp. 115–209.

    Google Scholar 

  • Korn, D., and Price, J. D., 1987, Taxonomy and phylogeny of the Kosmoclymeniinae subfam. nov. (Cephalopoda, Ammonoidea, Clymeniida), Cour. Forschungsinst. Senckenb. 92: 5–75.

    Google Scholar 

  • Kulicki, C., 1974, Remarks on the embryogeny and postembryonal development of ammonites, Acta Palaeontol. Pol. 19: 201–224.

    Google Scholar 

  • Kulicki, C., 1979, The ammonite shell: Its structure, development and biological significance, Palaeontol. Pol. 39: 97–142.

    Google Scholar 

  • Kullmann, J., and Scheuch, J., 1970, Wachstums-Änderungen in der Ontogenese paläozoischer Ammonoideen, Lethaia 3: 397–412.

    Google Scholar 

  • Kullmann, J., and Scheuch. J., 1972, Absolutes and relatives Wachstum bei Ammonoideen, Lethaia 5: 129–146.

    Google Scholar 

  • Landman, N H, 1983, Ammonoid growth rhythms, Lethaia 16: 248.

    Google Scholar 

  • Landman, N. H., 1986, Developmental criteria for comparing ammonite ontogenies, Geol. Soc. Am. Abst. Prog. 18 (6): 665.

    Google Scholar 

  • Landman, N. H., 1987, Ontogeny of Upper Cretaceous (Turonian–Santonian) scaphitid ammonites from the Western Interior of North America: Systematics, developmental patterns, and life history, Bull. Am. Mus. Nat. Hist. 185 (2): 117–241.

    Google Scholar 

  • Landman, N. H., 1988, Early ontogeny of Mesozoic ammonites and nautilids, in: Cephalopods—Present and Past ( J. Weidmann and J. Kullmann, eds.), Schweitzerbart’sche Verlagsbuchhandlung, Stuttgart, pp. 215–228.

    Google Scholar 

  • Landman, N. H., 1989, Iterative progenesis in Upper Cretaceous ammonites, Paleobiology 15 (2): 95–117.

    Google Scholar 

  • Landman, N. H., and Cochran, J. K., 1987, Growth and longevity of Nautilus, in: Nautilus—The Biology and Paleobiology of a Living Fossil ( W. B. Saunders and N. H. Landman, eds.), Plenum Press, New York, pp. 401–420.

    Google Scholar 

  • Landman, N. H., and Klofak, S. M., Size frequency studies in Late Cretaceous ammonoids: Evidence for rate of growth, in prep.

    Google Scholar 

  • Landman, N. H., and Waage, K. M., 1986, Shell abnormalities in scaphitid ammonites, Lethaia 19: 211–224.

    Google Scholar 

  • Landman, N. H., and Waage, K. M., 1993, Scaphitid ammonites of the Upper Cretaceous (Maastrichtian) Fox Hills Formation in South Dakota and Wyoming, Bull. Am. Mus. Nat. Hist. 215: 1–257.

    Google Scholar 

  • Landman, N. H., Tanabe, K., Mapes, R. H., Klofak, S. M., and Whitehill, J., 1993, Pseudosutures in Paleozoic ammonoids. Lethaia 26: 99–100.

    Google Scholar 

  • Landman, N. H., Cochran, J. K., Rye, D. M., Tanabe, K., and Arnold, J. M., 1994, Early life history of Nautilus: Evidence from isotopic analysis of aquarium-reared specimens, Paleobiology 20 (1): 40–51.

    Google Scholar 

  • Lange, W., 1932, Über Symbiosen von Serpula mit Ammoniten im unteren Lias Norddeutschlands, Z. Dtsch. Geol. Ges. 84: 229–234.

    Google Scholar 

  • Lehmann, U., 1966, Dimorphismus bei Ammoniten der Ahrensburger Lias-Geschiebe, Paleontol. Z. 40: 26–55.

    Google Scholar 

  • Lehmann, U., 1981, The Ammonites: Their Life and Their World, Cambridge University Press, Cambridge. Linsley, R. M., and Javidpour, M., 1980, Episodic growth in Gastropoda, Malacologia 20: 153–160.

    Google Scholar 

  • Lominadzé, T. A., Sharikadzé, M. Z., and Kvantaliani, I. V., 1993, On mechanism of soft body movement within body chamber in ammonites, Geobios Mem. Spec. 15: 267–273.

    Google Scholar 

  • Mackenzie, C. L., Jr., 1960, Interpretation of varices and growth ridges on shells of Eupleura caudata, Ecology 41 (4): 783–784.

    Google Scholar 

  • Maeda, H., 1993, Dimorphism of Late Cretaceous false-puzosiine ammonites, Yokoyamaoceras Wright and Matsumoto, 1954 and Neopuzosia Matsumoto, 1954, Trans. Proc. Palaeont. Soc. Jpn. N.S. 169: 97–128.

    Google Scholar 

  • Makowski, H., 1962, Problem of sexual dimorphism in ammonites, Palaeontol. Pol. 12: 1–92.

    Google Scholar 

  • Makowski, H., 1971, Some remarks on the ontogenetic development and sexual dimorphism in the Ammonoidea. Acta Geol. Pol. 21 (3): 321–340.

    Google Scholar 

  • Mancini, E. A., 1978, Origin of micromorph faunas in the geologic record, J. Paleontol. 52(2): 311322.

    Google Scholar 

  • Mangold, K., 1983, Food, feeding and growth in cephalopods, Mem. Natl. Mus. Victoria 44: 81–93.

    Google Scholar 

  • Mangold, K., 1987, Reproduction, in: Cephalopod Life Cycles, Vol. II ( P. R. Boyle, ed.), Academic Press, London, pp. 157–200.

    Google Scholar 

  • Matsukawa, M., 1987, Early shell morphology of Karsteniceras (ancyloceratid) from the Lower Cretaceous Choshi Group, Japan and its significance to the phylogeny of Cretaceous hetero-morph ammonites, Trans. Proc. Palaeont. Soc. Jpn. New Ser. 148: 346–359.

    Google Scholar 

  • Matsumoto, T., 1991, The Mid-Cretaceous ammonites of the family Kossmaticeratidae from Japan, Palaeont. Soc. jpn. Spec. Pap. 33: 1–143.

    Google Scholar 

  • Matsumoto, T., Muramoto, T., and Inoma, A., 1972, Two small desmoceratid ammonites from Hokkaido, Trans. Proc. Palaeont. Soc. jpn. New Ser. 87: 377–394.

    Google Scholar 

  • Matyja, B. A., 1986, Developmental polymorphism in Oxfordian ammonites, Acta Geol. Pol. 36 (1–3): 37–68.

    Google Scholar 

  • McConnaughey, T., 1989a, 13C and 180 isotopic disequilibrium in biological carbonates, I. Patterns, Geochim. Cosmochim. Acta 53: 151–162.

    Google Scholar 

  • McConnaughey, T., 1989b, 13C and 180 isotopic disequilibrium in biological carbonates. II. In vitro simulation of kinetic isotope effects, Geochim. Cosmochim. Acta 53:163–171.

    Google Scholar 

  • Meinhardt, H., and Klinger, M., 1987, A model for pattern formation on the shells of molluscs, J. Theor. Biol. 126: 63–89.

    Google Scholar 

  • Meischner, D., 1968, Pemiciöse Epökie von Placunopsis auf Ceratites, Lethaia 1: 156–174.

    Google Scholar 

  • Merkt, J., 1966, Über Austern und Serpeln als Epöken auf Ammonitengehäusen, N. Jb. Geol. Paläont. Abh. 125: 467–479.

    Google Scholar 

  • Mesnil, B., 1977, Growth and life cycle of squid, Loligo pealei and Illex illecebrosus, from the Northwest Atlantic, ICNAF Sel. Papers 2: 55–69.

    Google Scholar 

  • Mignot, Y., 1993, Un problème de paléobiologie chez les ammonoïdes (Cephalopoda): Croissance et miniaturisation en liaison avec les environnements, Docum. Lab. Geol. Lyon 124: 1–113.

    Google Scholar 

  • Mignot, Y., Elmi, S., and Dommergues, J.-L., 1993, Croissance et miniaturisation de quelques Hildoceras (Cephalopoda) en liaison avec des environnements contraignant de la Téthys toarcienne, Geobios Mem. Spec. 15: 305–312.

    Google Scholar 

  • Miller, A. K., Furnish, W. M., and Schindewolf, O. H., 1957, Paleozoic Ammonoidea, in: Treatise on Invertebrate Paleontology, Part L, Mollusca 4 ( R. C. Moore, ed.), Geological Society of America and University of Kansas Press, Lawrence, KS, pp. 11–80.

    Google Scholar 

  • Mojsisovics, E. v., 1886, Arktische Triasfaunen, Mem. Acad. Imp. Sci. St. Petersbourg 7: 33.

    Google Scholar 

  • Morton, N., 1988, Segregation and migration patterns in some Graphoceras populations (Middle Jurassic), in: Cephalopods—Present and Past ( J. Wiedmann and J. Kullmann, eds.), Schweiz-erbart’sche Verlagsbuchhandlung, Stuttgart, pp. 377–385.

    Google Scholar 

  • Oba, T., Kai, M., and Tanabe, K., 1992, Early life history and habitat of Nautilus pompilius, Kagoshima Univ. Res. Center S. Pac. Occas. Pap. 1: 26–29.

    Google Scholar 

  • Obata, I., 1959, Croissance relative sur quelques espèces des Desmoceratidae, Mem. Fac. Sci. Kyushu Univ., Ser. D Geol. 9 (1): 33–45.

    Google Scholar 

  • Obata, I., 1960, Spirale de quelques ammonites, Mem. Fac. Sci., Kyushu Univ., Ser. D Geol. 9 (3): 151–163.

    Google Scholar 

  • Obata, I., 1965, Allometry of Reesidites minimus, a Cretaceous ammonite species, Trans. Proc. Palaeont. Soc. Japan, New Ser. 58: 39–63.

    Google Scholar 

  • Obata, I., Futakami, M., Kawashita, Y., and Takahashi, T., 1978, Apertural features in some Cretaceous ammonites from Hokkaido, Bull. Natl. Sci. Mus. Ser. C (Geol.) 4 (3): 139–155.

    Google Scholar 

  • Oechsle, E., 1958, Stratigraphie und Ammonitenfauna der Sonninien-Schichten des Filsgebiets unter besonderer Berücksichtigung der Sowerbyi-Zone (Mittlerer Dogger, Württemberg), Palaeontogr. Abt. A 111: 47–129.

    Google Scholar 

  • Okamoto, T., 1989, Changes in life orientation during the ontogeny of some heteromorph ammonoids, Palaeontology (Land.) 31 (2): 281–294.

    Google Scholar 

  • Okamoto, T., 1993, Theoretical modelling of ammonite morphogenesis, N. Jb. Geol. Paläont. Abh. 190 (2/3): 183–190.

    Google Scholar 

  • Palframan, D. F. B., 1966, Variation and ontogeny of some Oxfordian ammonites: Taramelliceras richei (de Loriol) and Creniceras renggeri (Oppel), from Woodham, Buckinghamshire, Palaeontology (Lond.) 9 (2): 290–311.

    Google Scholar 

  • Palframan, D. E B., 1967, Mode of early shell growth in the ammonite Promicrocems marstonense Spath, Nature (Land.) 216: 1128–1130.

    Google Scholar 

  • Pompeckj, J. E, 1884, Über Ammonoideen mit anomaler Wohnkammer, j. Ver. Vaterl. Naturk. Wurtt. 49: 220–290.

    Google Scholar 

  • Raup, D., 1967, Geometric analysis of shell coiling: Coiling in ammonoids, J. Paleontol. 41: 43–65.

    Google Scholar 

  • Raup, D., and Chamberlain, J. A., Jr., 1967, Equations for volume and center of gravity in ammonoid shells, J. Paleontol. 41: 566–574.

    Google Scholar 

  • Richard, A., 1970, Analyse du cycle sexual chez les céphalopodes mise en évidence expérimentale d’un rythme conditionné par les variations des facteurs externes et internes, Bull. Soc. Zool. Fr. 95: 461–469.

    Google Scholar 

  • Richards, R. P., and Bambach, R. K., 1975, Population dynamics of some Paleozoic brachiopods and their paleoecological significance, J. Paleontol. 49 (5): 775–798.

    Google Scholar 

  • Rieber, H., 1963, Ammoniten und Stratigraphie des Braunjura ß der Schwaebischen Alb., Palaeontogr. Abt. A 122: 1–89.

    Google Scholar 

  • Rounsefell, G. A., and Everhart, W. H., 1953, Fishery Science—Its Methods and Applications, John Wiley & Sons, New York.

    Google Scholar 

  • Rye, D. M., and Sommer, M. A., 1980, Reconstructing paleotemperature and paleosalinity regimes with oxygen isotopes, in: Skeletal Growth of Aquatic Organisms ( D. C. Rhoads and R. A. Lutz, eds.), Plenum Press, New York, pp. 169–202.

    Google Scholar 

  • Saunders, W. B., 1983, Natural rates of growth and longevity of Nautilus belauensis, Paleobiology 9 (3): 280–288.

    Google Scholar 

  • Schindewolf, O. H., 1934, Über Epöken auf Cephalopoden-Gehäusen, Palaeontol. Z. 16: 15–31.

    Google Scholar 

  • Schindewolf, O. H., 1958, Über Aptychen (Ammonoidea), Palaeontogr. Abt. A 111: 1–46.

    Google Scholar 

  • Seilacher, A., 1960, Epizoans as a key to ammonoid ecology, J. Paleontol. 34: 189–193.

    Google Scholar 

  • Seilacher, A., 1982, Ammonite shells as habitats in the Poseidonia Shales of Holzmaden—floats or benthic islands? N. Jb. Geol. Paläont. Abh. 159: 98–114.

    Google Scholar 

  • Seilacher, A., 1988, Why are nautiloid and ammonite sutures so different? N. Jb. Geol. Paläont. Abh. 177: 41–67.

    Google Scholar 

  • Seilacher, A., and Gunji, P. Y., 1993, Morphogenetic countdowns in heteromorph shells, N. Jb. Geol. Paläont. Abh. 190 (2/3): 237–265.

    Google Scholar 

  • Sheldon, R. W., 1965, Fossil communities with multi-modal size–frequency distributions, Nature 206 (4991): 1336–1338.

    Google Scholar 

  • Shigeta, Y., 1993, Post-hatching early life history of Cretaceous Ammonoidea, Lethaia 26(2):133–145.

    Google Scholar 

  • Simoulin, E., 1945, Observations sur la croissance de la coquille chez quelques Stéphanocératides, Ann. Soc. Géol. Nord 65: 9–19.

    Google Scholar 

  • Smith, J. P., 1898, The development of Lytoceras and Phylloceras, Proc. Calif Acad. Sci. (Geol.) 1 (4): 129–161.

    Google Scholar 

  • Speden, I. G., 1970, The type Fox Hills Formation, Cretaceous (Maestrichtian), South Dakota, Part 2, Systematics of the Bivalvia, Peabody Mus. Nat. Hist. Yale Univ. Bull. 33: 1–222.

    Google Scholar 

  • Stahl, W., and Jordan, R., 1969, General considerations on isotopic paleotemperature determinations and analyses on Jurassic ammonites, Earth Planet. Sci. Lett. 6: 173–178.

    CAS  Google Scholar 

  • Stevens, G. R., 1988, Giant ammonites: A review, in: Cephalopods—Present and Past ( J. Wied-mann and J. Kullmann, eds.), Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp. 141–166.

    Google Scholar 

  • Surlyk, F., 1972, Morphological adaptations and population structures of the Danish Chalk brachiopods (Maastrichtian, Upper Cretaceous), K. Dan. Vidensk. Selsk. Biol. Skr. 19 (2): 1–57.

    Google Scholar 

  • Tanabe, K., 1975, Functional morphology of Otoscaphites puerculus (limbo), an Upper Cretaceous ammonite, Trans. Proc. Palaeontol. Soc. Jpn, New Ser. 99: 109–132.

    Google Scholar 

  • Tanabe, K., 1977, Functional evolution of Otoscaphites puerculus (limbo) and Scaphites planus (Yabe), Upper Cretaceous ammonites, Mem. Fac. Sci. Kyushu Univ. Ser. D (Geol.) 23: 367–407.

    Google Scholar 

  • Tanabe, K., 1979, Palaeoecological analysis of ammonoid assemblages in the Turonian Scaphites facies of Hokkaido, Japan, Palaeontology (Land.) 22 (3): 609–630.

    Google Scholar 

  • Tanabe, K., and Landman, N. H., Translocation of the soft body in Mesozoic ammonoids, in prep. Tanabe, T., Obata, I., and Futakami, H., 1981, Early shell morphology in some Upper Cretaceous heteromorph ammonites, Trans. Proc. Palaeontol. Soc. Jpn. New Ser. 124: 215–234.

    Google Scholar 

  • Tanabe, K., Landman, N. H., and Weitschat, W., 1993, Septal necks in Mesozoic Ammonoidea: Structure, ontogenetic development, and evolution, in: The Ammonoidea: Environment, Ecology, and Evolutionary Change, Systematics Association Spec. Vol. 47 ( M. R. House, ed.), Clarendon Press, Oxford, pp. 57–84.

    Google Scholar 

  • Teisseyre, L., 1889, Über die systematische Bedeutung der sog. Parabeln der Perisphincten, N. Jb. Miner. Geol. PaMont. 6 (1): 570–643.

    Google Scholar 

  • Tevesz, M. J. S., and Carter, J. G., 1980, Environmental relationships of shell form and structure of unionacean bivalves, in: Skeletal Growth of Aquatic Organisms ( D. C. Rhoads and R. A. Lutz, eds.), Plenum Press, New York, pp. 295–322.

    Google Scholar 

  • Thompson, D. W., 1917, On Growth and Form, Cambridge University Press, London.

    Google Scholar 

  • Tourtelot, H. A., and Rye, R. O., 1969, Distribution of oxygen and carbon isotopes in fossils of Late Cretaceous age, Western Interior region of North America, Geol. Soc. Am. Bull. 80: 1903–1922.

    CAS  Google Scholar 

  • Tozer, E. T., 1965, Latest Lower Triassic ammonoids from Ellesmere Island and northeastern British Columbia, Geol. Sun’. Can. Bull. 123.

    Google Scholar 

  • Tozer, E. T., 1991. Relationship between spines, parabolic nodes, rhythmic shell secretion and formation of septa in some Triassic ammonoids, in: The Ammonoidea: Evolution and Environmental Change, Systematics Association Symp. London Prog. Abstr., pp. 23–24.

    Google Scholar 

  • Trueman, A. E., 1941, The ammonite body-chamber, with special reference to the buoyancy and mode of life of the living ammonite, Q. J. Geol. Soc. Lond. 96: 339–383.

    Google Scholar 

  • Van Heukelem, W. R,1978, Aging in lower animals, in: Biology of Aging (J. A. Behnke, C. E. Finch, and B. C. Moment, eds.), Plenum Press, New York, pp. 115–130.

    Google Scholar 

  • Vermeij, G. J., 1980, Gastropod shell growth rate, allometry, and adult size—environmental implications, in: Skeletal Growth of Aquatic Organisms ( D. C. Rhoads and R. A. Lutz, eds.), Plenum Press, New York, pp. 379–394.

    Google Scholar 

  • Vermeij, G. J., 1993, A Natural History of Shells, Princeton University Press, Princeton.

    Google Scholar 

  • Waage, K. M., 1968, The type Fox Hills Formation, Cretaceous (Maestrichtian), South Dakota, Part 1, stratigraphy and paleoenvironments, Peabody Mus. Nat. Hist. Yale Univ. Bull. 27: 1–175.

    Google Scholar 

  • Wähner, E, 1894, Beiträge zur Kenntniss der tieferen Zonen des unteren Lias in der nordöstlische Alpen, Beitr. Paläontol. Österr. Ungarns. Orients 9 (I–II): 1–54.

    Google Scholar 

  • Ward, P. D., 1982, The relationship of siphuncle size to emptying rates in chambered cephalopods: Implications for cephalopod paleobiology, Paleobiology 8: 426–433.

    Google Scholar 

  • Ward, P. D., 1985, Periodicity of chamber formation in chambered cephalopods: Evidence from Nautilus macromphalus and Nautilus pompilius, Paleobiology 11: 438–450.

    Google Scholar 

  • Ward, P. D., 1986, Rates and processes of compensatory buoyancy change in Nautilus macromphalus, Veliger 28: 356–368.

    Google Scholar 

  • Ward, P. D., 1987, The Natural History of Nautilus, Allen and Unwin, Boston.

    Google Scholar 

  • Ward, P. D., 1992, On Methuselah’s Trail, W. H. Freeman, New York.

    Google Scholar 

  • Ward, P. D., and Chamberlain, J. A., Jr., 1983, Radiographic observation of chamber formation in Nautilus pompilius, Nature (Lond.) 304: 57–59.

    Google Scholar 

  • Ward, P. D., and Greenwald, L., 1982, Chamber refilling in Nautilus, J. Mar. Biol. Assoc. U.K. 62: 469–475.

    Google Scholar 

  • Ward, P. D., Greenwald, L., and Magnier, Y., 1981, The chamber formation cycle in Nautilus macromphalus, Paleobiology 7 (4): 481–493.

    Google Scholar 

  • Weitschat, W., and Bandel, K., 1991, Organic components in phragmocones of Boreal Triassic ammonoids: Implications for ammonoid biology, Paläontol. Z. 65: 269–303.

    Google Scholar 

  • Weitschat, W., and Bandel, K., 1992, Formation and function of suspended organic cameral sheets in Triassic ammonoids: Reply, Paläontol. Z. 66: 443–444.

    Google Scholar 

  • Wells, M. J., 1983, Cephalopods do it differently, New Sci. 100: 332–338.

    Google Scholar 

  • Wells, M. J., and Wells, J., 1959, Hormonal control of sexual maturity in Octopus, J. Exp. Biol. 36: 1–33.

    Google Scholar 

  • Wells, M. J., and Wells, J., 1977, Cephalopoda: Octopoda, in: Reproduction of Marine Inverte-brates, Vol. IV ( A. C. Giese and J. S. Pearse, eds.), Academic Press, New York, pp. 291–336.

    Google Scholar 

  • Westermann, G. E. G., 1954, Monographie der Otoitidae (Ammonoidea), Geol. Jahrb. Beih. 15: 1–364.

    Google Scholar 

  • Westermann, G. E. G., 1958, The significance of septa and sutures in Jurassic ammonite systematics, Geol. Mag. 95 (6): 441–455.

    Google Scholar 

  • Westermann, G. E. G., 1971, Form, structure, and function of shell and siphuncle in coiled Mesozoic ammonoids, Life Sci. Contr. R. Ont. Mus. 78: 1–39.

    Google Scholar 

  • Westermann, G. E. G., 1975, Architecture and buoyancy of simple cephalopod phragmocones and remarks on ammonites, Paläontol. Z. 49: 221–234.

    Google Scholar 

  • Westermann, G. E. G., 1990, New developments in ecology of Jurassic–Cretaceous ammonoids, in: Atti del secondo convegno inernazionale, Fossili, Evoluzione, Ambiente, Pergola, 1987 ( G. Pallini, F. Cecca, S. Cresta, and M. Santantonio, eds.), Tectnostampa, Ostra Vetere, Italy, pp. 459–478.

    Google Scholar 

  • Westermann, G. E. G., 1992, Formation and function of suspended organic cameral sheets in Triassic ammonoids—discussion, Paläontol. Z. 66 (3/4): 437–441.

    Google Scholar 

  • Whittaker, S. G., Kyser, T. K., and Caldwell, W. G. E., 1987, Paleoenvironmental geochemistry of the Clagett marine cyclothem in south-central Saskatchewan, Can. J. Earth Sci. 24: 967–984.

    CAS  Google Scholar 

  • Wiedmann, J., and Boletzky, S. v., 1982, Wachstum und Differenzierung des Schlups von Sepia officinalis unterkünstlichen Aufzuchtbedingungen—Grenzen der Anwendung im palökologischen Modell, N. Jb. Geol. Paläont. Abh. 164 (1/2): 118–133.

    Google Scholar 

  • Zaborski, P. M. P., 1986, Internal mould markings in a Cretaceous ammonite from Nigeria, Palaeontology 29: 725–738.

    Google Scholar 

  • Zakharov, Y. D., 1977, Ontogeny of ceratites of the genus Pinacoceras and developmental features of the suborder Pinacoceratina, Paleontol. J. 4: 445–451.

    Google Scholar 

  • Zell, H., Zell, I., and Winter, S., 1979, Das Gehäusewachstum der Ammonitengattung Amaltheus De Montfort während der frühontogenetischen Entwicklung, N. Jb. Geol. Paläont. Mh. 10: 631–640.

    Google Scholar 

  • Zuev, G. V., 1975, Physiological variation in female squids Symplectoteuthis pteropus (Steenstrup), Biol. Moyra 38: 55–62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bucher, H., Landman, N.H., Klofak, S.M., Guex, J. (1996). Mode and Rate of Growth in Ammonoids. In: Landman, N.H., Tanabe, K., Davis, R.A. (eds) Ammonoid Paleobiology. Topics in Geobiology, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9153-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9153-2_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9155-6

  • Online ISBN: 978-1-4757-9153-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics