Architecture and Strength of the Ammonoid Shell

  • Roger A. Hewitt
Part of the Topics in Geobiology book series (TGBI, volume 13)


The present chapter concentrates on those aspects of ammonoid morphology that are directly related to the habitat depth of ammonoids and the strength of the shell. Other chapters in the present volume discuss the role of cameral water and ornamentation in locomotion (Chapters 7 and 16, this volume), the growth of septal sutures (Chapter 9, this volume), and ecology (Chapter 16, this volume). The symbols used in this chapter are defined in Table I.


Slenderness Ratio Internal Septum Toroidal Shell Habitat Depth Ammonoid Shell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Batt, R. J., 1991, Sutural amplitude of ammonite shells as a paleoenvironmental indicator, Lethaia 24: 219–225.CrossRefGoogle Scholar
  2. Bayer, U., 1977, Cephalopoden-Septen Teil 1: Konstruktionsmorphologie der Ammoniten-Septurns, N. Jb. Geol. Paläont. Abh. 154: 290–366.Google Scholar
  3. Bayer, U., 1985, The biomechanical interpretation of ammonite septa, Geol. Soc. Am. Abstr. Prog. 17 (1): 4.Google Scholar
  4. Boyajian, G., and Lutz, T., 1992, Evolution of biological complexity and its relation to taxonomic longevity in the Ammonoidea, Geology 20: 983–986.CrossRefGoogle Scholar
  5. Callomon, J. H., 1985, The evolution of the Jurassic ammonite family Cardioceratidae, Spec. Pap. Palaeonto 133: 49–90.Google Scholar
  6. Callomon, J. H., 1994, The Ammonoidea: Environment, ecology, and evolutionary change, Hist. Biol. 7: 342–345.Google Scholar
  7. Chamberlain, J. A., and Moore, W. A., 1982, Rupture strength and flow rate of Nautilus siphuncular tube, Paleobiology 8: 408–425.Google Scholar
  8. Checa, A., and Westermann, G. E. G., 1989, Segmental growth in planulate ammonites: Inferences on costal function, Lethaia 22: 95–100.CrossRefGoogle Scholar
  9. Cowen, R., Gertman, R., and Wiggett, G., 1973, Camouflage patterns in Nautilus, and their implications for cephalopod paleobiology, Lethaia 6: 201–214.CrossRefGoogle Scholar
  10. Denton, E. J., 1974, On buoyancy and lives of modern and fossil cephalopods, Proc. R. Soc. Lond. (Biol.] 185: 273–299.CrossRefGoogle Scholar
  11. Denton, E. J., and Gilpin-Brown, J. B., 1966, On the buoyancy of the pearly Nautilus, J. Mar. Biol. Assoc. U.K. 46: 723–759.CrossRefGoogle Scholar
  12. Doguzhaeva, L., 1988, Siphuncular tube and septal necks in ammonoid evolution, in: Cephalopods—Present and Past ( J. Wiedmann and J. Kullmann, eds.), Schweizerbart’sche, Verlagsbuchhandlung Stuttgart, pp. 291–301.Google Scholar
  13. Geraghty, M. D., and Westermann, G. E. G., 1994, Origin of Jurassic ammonite concretion assemblages at Alfeld, Germany, a biogenic alternative, Paläontol. Z. 68: 473–490.Google Scholar
  14. Grégoire, C., 1984, Remains of organic components in the siphonal tube and in the brown membrane of ammonoids and nautiloids: Hydrothermal simulation of their diagenetic ultrastructural alterations, Akad. Wiss. Lit. Abh. Math. Naturwiss. Kl. (Mainz) 5: 1–56.Google Scholar
  15. Hasenmueller, W. A., and Hattin, D. E., 1985, Apatitic connecting rings in moulds of Baculites sp. from the middle part of the Smoky Hill Member, Niobrara Chalk (Santonian), of western Kansas, Cretaceous Res. 6: 317–330.CrossRefGoogle Scholar
  16. Henderson, A., 1984, A muscle attachment proposal for septal function in Mesozoic ammonites, Palaeontology 27: 461–486.Google Scholar
  17. Hewitt, R. A., 1985, Numerical aspects of sutural ontogeny in the Ammonitina and Lytoceratina, N. Jb. Geol. Paläont. Abh. 170: 273–290.Google Scholar
  18. Hewitt, R. A., 1993, Relation of shell strength to evolution in the Ammonoidea, in: The Ammonoidea: Environment, Ecology, and Evolutionary Change, Systematics Association Spec. Vol. 47 ( M. R. House, ed.), Clarendon Press, Oxford, pp. 35–56.Google Scholar
  19. Hewitt, R. A., and Westermann, G. E. G., 1983, Mineralogy, structure and homology of ammonoid siphuncles. N. Jb. Geol. Paläont. Abh. 165: 378–396.Google Scholar
  20. Hewitt, R. A., and Westermann, G. E. G., 1986, Function of complexly fluted septa in ammonoid shells. I. Mechanical principles and functional models, N. Jb. Geol. Paläont. Abh. 172: 47–69.Google Scholar
  21. Hewitt, R. A., and Westermann, G. E. G., 1987a, Function of complexly fluted septa in ammonoid shells. II. Septal evolution and conclusions, N. Jb. Geol. Paläont. Abh. 174: 135–169.Google Scholar
  22. Hewitt, R. A., and Westermann, G. E. G., 1987b, Nautilus shell architecture, in: Nautilus: The Biology and Paleobiology of a Living Fossil (W. B. Saunders and N. H. Landman, eds.), Plenum Press, New York, pp. 435–461.Google Scholar
  23. Hewitt, R. A., and Westermann, G. E. G., 1988, Application of buckling equations to the functional morphology of nautiloid and ammonoid phragmocones, Hist. Biol. 1: 225–231.CrossRefGoogle Scholar
  24. Hewitt, R. A., and Westermann, G. E. G., 1990, Nautilus shell strength variance as an indicator of habitat depth limits, N. Jb. Geol. Paläont. Abh. 179: 71–95.Google Scholar
  25. Hewitt, R. A., Abdelsalam, U. A., Dokainish, M. A., and Westermann, G. E. G., 1993, Comparison of the relative strength of siphuncles with prochoanitic and retrochoanitic septal necks by finite element analysis, in: The Ammonoidea: Environment, Ecology and Evolutionary Change, Systematics Association Spec. Vol. 47 ( M. R. House, ed.), Clarendon Press, Oxford, pp. 85–98.Google Scholar
  26. Howarth, M. K., 1978, The stratigraphy and ammonite fauna of the Upper Lias of Northamptonshire. Bull. Br. Mus. (Nat. Hist.) Geol. 29: 235–288.Google Scholar
  27. Isenberg, C., 1992, The Science of Soap Films and Soap Bubbles, Dover, New York.Google Scholar
  28. Jacobs, D. K., 1990, Sutural pattern and shell strength in Baculites with implications for other cephalopod shell morphologies, Paleoniology 16: 336–348.Google Scholar
  29. Jacobs, D. K., 1992, The support of hydrostatic load in cephalopod shells. Adaptive and ontogenetic explanations of shell form and evolution from Hooke 1695 to the present, in: Evolutionary Biology, Vol. 26 ( M. K. Hecht, B. Wallace, and R. J. Maclntyre, eds.), Plenum Press, New York, pp. 287–349.CrossRefGoogle Scholar
  30. Johnsen, S., and Kier, W. M., 1993, Intramuscular crossed connective tissue fibers: Skeletal support in the lateral fins of squid and cuttlefish (Mollusca: Cephalopoda), J. Zool. (Lond.) 231: 311–338.CrossRefGoogle Scholar
  31. Joly, B., 1976, Les Phylloceratidae malgaches au Jurassique. Generalités sur les Phylloceratidae et quelques Juraphyllitidae, Doc. Lab. Geol. Fac. Sci. Lyon 67: 1–471.Google Scholar
  32. Korn, D., 1991, Relationship between shell form, septal construction and suture line in clymeniid cephalopods (Ammonoidea: Upper Devonian), N. Jb. Geol. Paliiont. Abh. 185: 115–130.Google Scholar
  33. Kulicki, C., and Mutvei, H., 1988, Functional interpretation of ammonoid septa, in: Cephalopods—Present and Past ( J. Wiedmann and J. Kullmann, eds.), Schweizerbart’sche, Verlagsbuchandlung Stuttgart, pp. 713–718.Google Scholar
  34. Lamont, A., 1982. Mouth and tooth mimicry, Scot. J. Sci. 2: 11–32.Google Scholar
  35. Lowenstam, H. A., Traub, W., and Weiner, S., 1984, Nautilus hard parts: A study of the mineral and organic constituents, Paleobiology 10: 268–279.Google Scholar
  36. Mehl, J., 1978, Anhaufungen scherbenartiger Fragmente von Ammonitenschalen im suddeutschen Lias und Malm und ihre Deutung als Frassreste, Ber. Naturforsch. Ges. Freib. Breisgau 68: 75–93.Google Scholar
  37. Miller, A. K., and Unklesbay, A. G., 1943, The siphuncle of late Paleozoic ammonoids, J. Paleontol. 17: 1–25.Google Scholar
  38. Mutvei, H., 1967, On the microscopic shell structure in some Jurassic ammonoids, N. Jb. Geol. Paidont. Abh. 129: 157–166.Google Scholar
  39. Mutvei. H., 1975, The mode of life in ammonoids, Paläontol. Z. 49: 196–202.Google Scholar
  40. Pfaff, E., 1911, Über Form und Bau der Ammonitenseptum und ihre Beziehungen zur Suturelinie. Jahresber. Niedersach. Geol. Ver. 4: 207–223.Google Scholar
  41. Rangheard, Y., and Theobald, N., 1961, Signification biologique de la coquille des ammonites, Ann. Sci. Univ. Besançon Geol. 14: 119–133.Google Scholar
  42. Raup, D. M., and Takahashi, T., 1966, Experiments on strength of cephalopod shells, Geol. Soc. Am. Spec. Pap. 101: 172–173.Google Scholar
  43. Raup, D. M., and Stanley, S. M.,1971, Principles of Paleontology, 1stEd., Freeman, San Francisco.Google Scholar
  44. Roark, R. J., and Young, W. C., 1982, Formulas for Stress and Strain, 5th Ed., McGraw-Hill, New York.Google Scholar
  45. Ross, C. T. E, 1990, Pressure Vessels under External Pressure: Statics and Dynamics, Elsevier, AmsterdamGoogle Scholar
  46. Saunders, W. B., 1995, The ammonite suture problem: Relationships between shell and septum thickness in Paleozoic ammonoids, Paleobiology 21: 343–355.Google Scholar
  47. Saunders, W. B., Ward, P. D., and Daniel, T. L., 1994, Cameral liquid transport: Resolution of the ammonite suture problem?, Geol. Soc. Am. Abstr. Prog. 26:A-375.Google Scholar
  48. Seilacher, A., 1975, Mechanische Simulation und funktionelle Evolution des Ammoniten-Septurns, Paläontol. Z. 49: 268–286.Google Scholar
  49. Shaaban, A., and Ketcham, M.S., 1976, Design of hipped hypar shells, J. Struct. Di. 102 (ST11): 2151–2161.Google Scholar
  50. Sobel, L. H., and Flugge, W., 1967, Stability of toroidal shells under uniform external pressure, AIAAA J. 5: 425–431.CrossRefGoogle Scholar
  51. Stein, M., and McElman, J. A., 1965, Buckling of segments of toroidal shells, AIAA J. 3: 1704–1709.CrossRefGoogle Scholar
  52. Tanabe, K., 1977, Functional evolution of Otoscaphites puerculus (Jimbo) and Scaphites planus (Yabe), Upper Cretaceous ammonites, Mem. Fac. Sci. Kyushu Univ. (D) Geol. 23: 367–407.Google Scholar
  53. Tanabe, K., 1979, Palaeoecological analysis of ammonoid assemblages in the Turonian Scaphites facies of Hokkaido, Japan, Palaeontology 22: 609–630.Google Scholar
  54. Timoshenko, C. P., 1983, The History of Strength of Materials, Dover, New York.Google Scholar
  55. Wainwright, S. A., Biggs, W. D., Currey, J. D., and Gorsline, J. M., 1976, Mechanical Design in Organisms, Edward Arnold. London.Google Scholar
  56. Wang, Y., and Westermann, G. E. G., 1993, Paleoecology of Triassic ammonoids, Geobios Mém. Spéc. 15: 373–392.CrossRefGoogle Scholar
  57. Ward, P., 1980, Comparative shell shape distributions in Jurassic—Cretaceous ammonites and Jurassic—Tertiary nautilids, Paleobiology 6: 32–43.Google Scholar
  58. Ward, P., 1981, Shell sculpture as a defensive adaptation in ammonoids, Paleobiology 7: 96–100.Google Scholar
  59. Ward, P. D., 1987, The Natural History of Nautilus, Allen and Unwin, London.Google Scholar
  60. Ward, P., and Signor, P., 1983, Evolutionary tempo in Jurassic and Cretaceous ammonites, Paleobiology 9: 183–198.Google Scholar
  61. Weitschat, W., and Bandel, K.. 1991, Organic components in phragmocones of Boreal Triassic ammonoids: Implications for ammonoid biology, Paläontol. Z. 65: 269–303.Google Scholar
  62. Weitschat, W., and Bandel, K., 1992, Formation and function of suspended organic cameral sheets in Triassic ammonoids: Reply, Paläontol. Z. 66 (314): 443–444.Google Scholar
  63. Westermann, G. E. G., 1971, Form, structure and function of shell and siphuncle in coiled Mesozoic ammonoids. Life Sci. Contrib. R. Ont. Mus. 78: 1–39.Google Scholar
  64. Westermann, G. E. G., 1973. Strength of concave septa and depth limits of fossil cephalopods, Lethaia 6: 373–403.Google Scholar
  65. Westermann, G. E. G., 1975, A model for origin, function and fabrication of fluted cephalopod septa, Paläontol. Z. 49: 235–253.Google Scholar
  66. Westermann, G. E. G., 1982, The connecting rings of Nautilus and Mesozoic ammonoids: Implications for ammonoid bathymetry, Lethaia 15: 373–384.CrossRefGoogle Scholar
  67. Westermann, G. E. G., 1990, New developments in ecology of Jurassic—Cretaceous ammonites, Atti II Convegno Internazionale, Fossili, Evoluzione, Ambiente, Pergola 1987 (G. Pallini, F. Cecca, S. Cresta, and M. Santantonio, eds.), Technostampa, Ostra Vetere, Italy, pp. 459–478.Google Scholar
  68. Westermann, G. E. G., and Weaver, D. S., 1979, Photoelasticity experiments on simplified models of ammonoid shells, in: The Ammonoidea: Abstracts Systematics Association Symposium ( M. R. House and J. Senior, eds.). York, England, p. 21.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Roger A. Hewitt
    • 1
  1. 1.Department of GeologyMcMaster UniversityHamiltonCanada

Personalised recommendations