Skip to main content

Indicators of Oxidative Stress in Aged Fischer 344 Rats: Potential for Neurotrophic Treatment

  • Chapter
Book cover Alzheimer’s and Parkinson’s Diseases

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 44))

Abstract

The etiology(ies) of the major human neurodegenerative diseases is completely unknown. Eisen and Caine1 have discussed the pathologic similarities of amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), and Alzheimer’s disease (AD), and hypothesized that these neurodegenerative diseases share a common etiology. We are pursuing two hypotheses concerning the cause and treatment of these neurodegenerative disorders, two hypotheses that are not mutually exclusive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Eisen and D. Caine, Amyotrophic lateral sclerosis, Parkinson’s disease and Alzheimer’s disease: Phylogenetic disorders of the human neocortex sharing many characteristics, Can. J. Neurol. Sci.19:117 (1992).

    Google Scholar 

  2. L. Volicer and P.B. Crino, Involvement of free radicals in dementia of the Alzheimer type: ahypothesis, Neurobiol. Aging.11:567 (1990).

    Google Scholar 

  3. C.W. Olanow, An introduction to the free radical hypothesis in Parkinson’s disease, Ann. Neurol.32:S2 (1992).

    Google Scholar 

  4. P. Jenner, D.T. Dexter, J. Sian, A.H.V. Schapira, and C.D. Marsden, Oxidative stress as a cause of nigral cell death in Parkinson’s disease and incidental Lewy body disease, Ann. Neurol. 32: S82 (1992).

    Article  PubMed  CAS  Google Scholar 

  5. J.M. Braughler and E.D. Hall, Central nervous system trauma and stroke. I. Biochemical considerations for oxy formation and lipid peroxidation, Free Radical Biol. Med. 6: 289 (1989).

    Article  CAS  Google Scholar 

  6. E.D. Harris, Regulation of antioxidant enzymes, FASEB J. 6: 2675 (1992).

    PubMed  CAS  Google Scholar 

  7. B. Halliwell and J.M.C. Gutteridge.“Free radicals in Biology and Medicine,”Clarendon Press, Oxford (1987).

    Google Scholar 

  8. B. Halliwell, J.M.C. Gutteridge, and C.E. Cross, Free radicals, antioxidants, and human disease: Where are we now?, J. Lab. Clin. Med. 119: 598 (1992).

    PubMed  CAS  Google Scholar 

  9. N.I. Krinsky, Mechanism of Action of Biological Antioxidants, P. S. E. B. M. 200: 248 (1992).

    CAS  Google Scholar 

  10. J.M. Carney, P.E. Starke-Reed, C.N. Oliver, R.W. Landum, M.S. Cheng, J.F. Wu, and R.A. Floyd, Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-a-phenylnitrone, Proc. Natl. Acad. Sci. USA. 88: 3633 (1991).

    Article  PubMed  CAS  Google Scholar 

  11. D. Harman, Free radicals in aging, Mol. Cell. Biochem.84:155 (1988).

    Google Scholar 

  12. D.R. Rosen, T. Siddique, D. Patterson, D.A. Figlewicz, P. Sapp, A. Hentati, D. Donaldson, J. Goto, J.P. O’Regan, H.-X. Deng, Z. Rahmani, A. Krizus, D. McKenna-Yasek, A. Cayabyab, S.M. Gaston, R. Berger, R.E. Tanzi, J.J. Halperin, B. Herzfeldt, R. Van den Bergh, W.-Y. Hung, T. Bird, G. Deng, and D.W. Mulder, Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis, Nature. 362: 59 (1993).

    Article  PubMed  CAS  Google Scholar 

  13. H.-X. Deng, A. Hentati, J.A. Tamer, Z. Iqbal, A. Cayabyab, W.-Y. Hung, E.D. Getzoff, P. Hu, B. Herzfeldt, R.P. Roos, C. Warner, G. Deng, E. Soriano, C. Smyth, H.E. Parge, A. Ahmed, A.D. Roses, R.A. Hallewell, M.A. Pericak-Vance, and T. Siddique, Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase, Science.261:1047 (1993).

    Google Scholar 

  14. J.S. Richardson, K.V. Subbarao, and L.C. Mg, On the possible role of iron-induced free radical peroxidation in neural degeneration in Alzheimer’s disP’se, Ann. NY Acad. Sci. 648: 326 (1992).

    Article  PubMed  CAS  Google Scholar 

  15. S.F. Marklund, R. Adolfsson, C.G. Gottfries, and B. Winblad, Superoxide dismutase isoenzymes in normal brains and brains from patients with dementia of Alzheimer’s type, J. Neurol. Sci. 67: 319 (1985).

    Article  PubMed  CAS  Google Scholar 

  16. A.C. Andom, R.S. Britton, and B.R. Bacon, Evidence that lipid peroxidation and total iron are increased in Alzheimer’s brain, Neurobiol. Aging.11:316 (1990).

    Google Scholar 

  17. C.D. Smith, J.M. Carney, P.E. Starke-Reed, C.N. Oliver, E.R. Stadtman, R.A. Floyd, and W.R. Markesbery, Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease, Proc. Natl. Acad. Sci. USA.88:10540 (1991).

    Google Scholar 

  18. I. Ceballos, F. Javoy-Agid, A. Delacourte, A. Defossez, M. Lafon, E. Hirsch, A. Nicole, P.M. Sinet, and Y. Agid, Neuronal localization of copper-zinc superoxide dismutase protein and mRNA within the human hippocampus from control and Alzheimer’s disease brains, Free Radic. Res. Commun.12–13:571 (1991).

    Google Scholar 

  19. J.R. Connor, Proteins of iron regulation in Alzheimer’s diseased brains, in: “Iron and Human Diseases, R.B. Lauffer, ed., CRC Press, (1992).

    Google Scholar 

  20. J.R. Connor, B.S. Snyder, J.L. Beard, R.E. Fine, and E.J. Mufson, Regional distribution of iron and iron-regulatory proteins in the brain in aging and Alzheimer’s disease, J. Neurosci. Res.31:327 (1992).

    Google Scholar 

  21. S.S. Panter and M.D. Scott, Elevated temporal cortex superoxide dismutase in Alzheimer’s disPase, Soc. Neurosci. Abstr. 17: 1072 (1991).

    Google Scholar 

  22. K.V. Subbarao, J.S. Richardson, and L.C. Ang, Autopsy samples of Alzheimer’s cortex show increased peroxidation in vitro, J. Neurochem.55:342 (1990).

    Google Scholar 

  23. L.J. McIntosh, M.A. Trush, and J.C. Troncoso, Oxygen-free radical mediated process in Alzheimer’s disease, Soc. Neurosci. Abstr. 17: 1071 (1991).

    Google Scholar 

  24. S.H. Appel, A unifying hypothesis for the cause of amyotrophic lateral sclerosis, Parkinsonism and Alzheimer disease, Ann. Neurol.10:499 (1993).

    Google Scholar 

  25. C.H. Phelps, F.H. Gage, J.H. Growdon, F. Hefti, R. Harbaugh, M.V. Johnston, Z.S. Khachaturian, W.C. Mobley, D.L. Price, M. Raskind, J. Simpkins, L.J. Thal, and J. Woodcock, Potential use of nerve growth factor to treat Alzheimer’s diseAci, Neurobiol. Aging.10:205 (1989).

    Google Scholar 

  26. S. Korsching, The neurotrophic factor concept: A reexamination, J. Neurosci.13:2739 (1993).

    Google Scholar 

  27. P.A. Lapchak, D.M. Araujo, and F. Hefti, Neurotrophins in the central nervous system, Rev. Neurosci.3:1 (1993).

    Google Scholar 

  28. L.R. Williams, J.R. Rylett, D.K. Ingram, J.A. Joseph, H.C. Moises, A.H. Tang, and R.F. Mervis, NGF affects the cholinergic neurochemistry and behavior of aged rats, Prog. Brain Res., in press.

    Google Scholar 

  29. R.J. Rylett, S. Goddard, B.M. Schmidt, and L.R. Williams, Acetylcholine synthesis and release following continuous intracerebral administration of NGF in adult and aged Fischer-344 rats, J. Neurosci.13:3956 (1993).

    Google Scholar 

  30. G.R. Jackson, L. Apffel, K. Werrbach-Perez, and J.R. Perez-Polo, Role of nerve growth factor in oxidant-antioxidant balance and neuronal injury. I. Stimulation of hydrogen peroxide resistance, J. Neurosci. Res. 25: 360 (1990).

    Article  PubMed  CAS  Google Scholar 

  31. Y. Zhang, T. Tatsuno, J.M. Carney, and M.P. Mattson, Basic FGF, NGF, and IGFs protect hippocampal and cortical neurons against iron-induced degeneration, J. Cereb. Blood Flow Metab. 13: 378 (1993).

    Article  PubMed  Google Scholar 

  32. G. Nisticò, M.R. Ciriolo, K. Fiskin, M. Iannone, A. deMartino, and G. Rotilio, NGF restores decrease in catalase activity and increases superoxide dismutase and glutathione peroxidase activity in the brain of aged rats, Free Radic. Biol. Med.12:177 (1992).

    Google Scholar 

  33. M.B. Spina, S.P. Squinto, J.A. Miller, R.M. Lindsay, and C. Hyman, Brain-derived neurotrophic factor protects dopamine neurons against 6-hydroxydopamine and N-methyl-4-phenylpyridinium ion toxicity: Involvement of the glutathione system, J. Neurochem.59:99 (1993).

    Google Scholar 

  34. W. Wisden and B.J. Morris, In situ hybridization with synthetic oligonucleotide probes, in: “In Situ Hybridization Applications For The Brain,” W. Wisden, ed., Academic Press, San Diego, CA (1993).

    Google Scholar 

  35. Y.-S. Ho and J.D. Crapo, cDNA and deduced amino acid sequence of rat copper-zinc-containing superoxide dismutase, Nucleic Acids Res. 15: 6746 (1987).

    CAS  Google Scholar 

  36. Y.S. Ho, Nucleotide sequence of cDNAs coding for rat manganese-containing superoxide dismutase, Nucleic Acids Res.15:10070 (1987).

    Google Scholar 

  37. D.L. Felten, S.Y. Felten, R.W. Fuller, T.D. Romano, E.B. Smalstig, D.T. Wong, and J.A. Clemens, Chronic dietary pergolide preserves nigrostriatal neuronal integrity in aged-Fischer-344 rats, Neurobiol. Aging. 13: 339 (1992).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Williams, L.R., Carter, D.B., Dunn, E., Connor, J.R. (1995). Indicators of Oxidative Stress in Aged Fischer 344 Rats: Potential for Neurotrophic Treatment. In: Hanin, I., Yoshida, M., Fisher, A. (eds) Alzheimer’s and Parkinson’s Diseases. Advances in Behavioral Biology, vol 44. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9145-7_92

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9145-7_92

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9147-1

  • Online ISBN: 978-1-4757-9145-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics