Indicators of Oxidative Stress in Aged Fischer 344 Rats: Potential for Neurotrophic Treatment

  • Lawrence R. Williams
  • Donald B. Carter
  • Edwige Dunn
  • James R. Connor
Part of the Advances in Behavioral Biology book series (ABBI, volume 44)


The etiology(ies) of the major human neurodegenerative diseases is completely unknown. Eisen and Caine1 have discussed the pathologic similarities of amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), and Alzheimer’s disease (AD), and hypothesized that these neurodegenerative diseases share a common etiology. We are pursuing two hypotheses concerning the cause and treatment of these neurodegenerative disorders, two hypotheses that are not mutually exclusive.


Amyotrophic Lateral Sclerosis Nerve Growth Factor Basal Forebrain Mesencephalic Dopamine Neuron Brain Protein Oxidation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Eisen and D. Caine, Amyotrophic lateral sclerosis, Parkinson’s disease and Alzheimer’s disease: Phylogenetic disorders of the human neocortex sharing many characteristics, Can. J. Neurol. Sci.19:117 (1992).Google Scholar
  2. 2.
    L. Volicer and P.B. Crino, Involvement of free radicals in dementia of the Alzheimer type: ahypothesis, Neurobiol. Aging.11:567 (1990).Google Scholar
  3. 3.
    C.W. Olanow, An introduction to the free radical hypothesis in Parkinson’s disease, Ann. Neurol.32:S2 (1992).Google Scholar
  4. 4.
    P. Jenner, D.T. Dexter, J. Sian, A.H.V. Schapira, and C.D. Marsden, Oxidative stress as a cause of nigral cell death in Parkinson’s disease and incidental Lewy body disease, Ann. Neurol. 32: S82 (1992).PubMedCrossRefGoogle Scholar
  5. 5.
    J.M. Braughler and E.D. Hall, Central nervous system trauma and stroke. I. Biochemical considerations for oxy formation and lipid peroxidation, Free Radical Biol. Med. 6: 289 (1989).CrossRefGoogle Scholar
  6. 6.
    E.D. Harris, Regulation of antioxidant enzymes, FASEB J. 6: 2675 (1992).PubMedGoogle Scholar
  7. 7.
    B. Halliwell and J.M.C. Gutteridge.“Free radicals in Biology and Medicine,”Clarendon Press, Oxford (1987).Google Scholar
  8. 8.
    B. Halliwell, J.M.C. Gutteridge, and C.E. Cross, Free radicals, antioxidants, and human disease: Where are we now?, J. Lab. Clin. Med. 119: 598 (1992).PubMedGoogle Scholar
  9. 9.
    N.I. Krinsky, Mechanism of Action of Biological Antioxidants, P. S. E. B. M. 200: 248 (1992).Google Scholar
  10. 10.
    J.M. Carney, P.E. Starke-Reed, C.N. Oliver, R.W. Landum, M.S. Cheng, J.F. Wu, and R.A. Floyd, Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-a-phenylnitrone, Proc. Natl. Acad. Sci. USA. 88: 3633 (1991).PubMedCrossRefGoogle Scholar
  11. 11.
    D. Harman, Free radicals in aging, Mol. Cell. Biochem.84:155 (1988).Google Scholar
  12. 12.
    D.R. Rosen, T. Siddique, D. Patterson, D.A. Figlewicz, P. Sapp, A. Hentati, D. Donaldson, J. Goto, J.P. O’Regan, H.-X. Deng, Z. Rahmani, A. Krizus, D. McKenna-Yasek, A. Cayabyab, S.M. Gaston, R. Berger, R.E. Tanzi, J.J. Halperin, B. Herzfeldt, R. Van den Bergh, W.-Y. Hung, T. Bird, G. Deng, and D.W. Mulder, Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis, Nature. 362: 59 (1993).PubMedCrossRefGoogle Scholar
  13. 13.
    H.-X. Deng, A. Hentati, J.A. Tamer, Z. Iqbal, A. Cayabyab, W.-Y. Hung, E.D. Getzoff, P. Hu, B. Herzfeldt, R.P. Roos, C. Warner, G. Deng, E. Soriano, C. Smyth, H.E. Parge, A. Ahmed, A.D. Roses, R.A. Hallewell, M.A. Pericak-Vance, and T. Siddique, Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase, Science.261:1047 (1993).Google Scholar
  14. 14.
    J.S. Richardson, K.V. Subbarao, and L.C. Mg, On the possible role of iron-induced free radical peroxidation in neural degeneration in Alzheimer’s disP’se, Ann. NY Acad. Sci. 648: 326 (1992).PubMedCrossRefGoogle Scholar
  15. 15.
    S.F. Marklund, R. Adolfsson, C.G. Gottfries, and B. Winblad, Superoxide dismutase isoenzymes in normal brains and brains from patients with dementia of Alzheimer’s type, J. Neurol. Sci. 67: 319 (1985).PubMedCrossRefGoogle Scholar
  16. 16.
    A.C. Andom, R.S. Britton, and B.R. Bacon, Evidence that lipid peroxidation and total iron are increased in Alzheimer’s brain, Neurobiol. Aging.11:316 (1990).Google Scholar
  17. 17.
    C.D. Smith, J.M. Carney, P.E. Starke-Reed, C.N. Oliver, E.R. Stadtman, R.A. Floyd, and W.R. Markesbery, Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease, Proc. Natl. Acad. Sci. USA.88:10540 (1991).Google Scholar
  18. 18.
    I. Ceballos, F. Javoy-Agid, A. Delacourte, A. Defossez, M. Lafon, E. Hirsch, A. Nicole, P.M. Sinet, and Y. Agid, Neuronal localization of copper-zinc superoxide dismutase protein and mRNA within the human hippocampus from control and Alzheimer’s disease brains, Free Radic. Res. Commun.12–13:571 (1991).Google Scholar
  19. 19.
    J.R. Connor, Proteins of iron regulation in Alzheimer’s diseased brains, in: “Iron and Human Diseases, R.B. Lauffer, ed., CRC Press, (1992).Google Scholar
  20. 20.
    J.R. Connor, B.S. Snyder, J.L. Beard, R.E. Fine, and E.J. Mufson, Regional distribution of iron and iron-regulatory proteins in the brain in aging and Alzheimer’s disease, J. Neurosci. Res.31:327 (1992).Google Scholar
  21. 21.
    S.S. Panter and M.D. Scott, Elevated temporal cortex superoxide dismutase in Alzheimer’s disPase, Soc. Neurosci. Abstr. 17: 1072 (1991).Google Scholar
  22. 22.
    K.V. Subbarao, J.S. Richardson, and L.C. Ang, Autopsy samples of Alzheimer’s cortex show increased peroxidation in vitro, J. Neurochem.55:342 (1990).Google Scholar
  23. 23.
    L.J. McIntosh, M.A. Trush, and J.C. Troncoso, Oxygen-free radical mediated process in Alzheimer’s disease, Soc. Neurosci. Abstr. 17: 1071 (1991).Google Scholar
  24. 24.
    S.H. Appel, A unifying hypothesis for the cause of amyotrophic lateral sclerosis, Parkinsonism and Alzheimer disease, Ann. Neurol.10:499 (1993).Google Scholar
  25. 25.
    C.H. Phelps, F.H. Gage, J.H. Growdon, F. Hefti, R. Harbaugh, M.V. Johnston, Z.S. Khachaturian, W.C. Mobley, D.L. Price, M. Raskind, J. Simpkins, L.J. Thal, and J. Woodcock, Potential use of nerve growth factor to treat Alzheimer’s diseAci, Neurobiol. Aging.10:205 (1989).Google Scholar
  26. 26.
    S. Korsching, The neurotrophic factor concept: A reexamination, J. Neurosci.13:2739 (1993).Google Scholar
  27. 27.
    P.A. Lapchak, D.M. Araujo, and F. Hefti, Neurotrophins in the central nervous system, Rev. Neurosci.3:1 (1993).Google Scholar
  28. 28.
    L.R. Williams, J.R. Rylett, D.K. Ingram, J.A. Joseph, H.C. Moises, A.H. Tang, and R.F. Mervis, NGF affects the cholinergic neurochemistry and behavior of aged rats, Prog. Brain Res., in press.Google Scholar
  29. 29.
    R.J. Rylett, S. Goddard, B.M. Schmidt, and L.R. Williams, Acetylcholine synthesis and release following continuous intracerebral administration of NGF in adult and aged Fischer-344 rats, J. Neurosci.13:3956 (1993).Google Scholar
  30. 30.
    G.R. Jackson, L. Apffel, K. Werrbach-Perez, and J.R. Perez-Polo, Role of nerve growth factor in oxidant-antioxidant balance and neuronal injury. I. Stimulation of hydrogen peroxide resistance, J. Neurosci. Res. 25: 360 (1990).PubMedCrossRefGoogle Scholar
  31. 31.
    Y. Zhang, T. Tatsuno, J.M. Carney, and M.P. Mattson, Basic FGF, NGF, and IGFs protect hippocampal and cortical neurons against iron-induced degeneration, J. Cereb. Blood Flow Metab. 13: 378 (1993).PubMedCrossRefGoogle Scholar
  32. 32.
    G. Nisticò, M.R. Ciriolo, K. Fiskin, M. Iannone, A. deMartino, and G. Rotilio, NGF restores decrease in catalase activity and increases superoxide dismutase and glutathione peroxidase activity in the brain of aged rats, Free Radic. Biol. Med.12:177 (1992).Google Scholar
  33. 33.
    M.B. Spina, S.P. Squinto, J.A. Miller, R.M. Lindsay, and C. Hyman, Brain-derived neurotrophic factor protects dopamine neurons against 6-hydroxydopamine and N-methyl-4-phenylpyridinium ion toxicity: Involvement of the glutathione system, J. Neurochem.59:99 (1993).Google Scholar
  34. 34.
    W. Wisden and B.J. Morris, In situ hybridization with synthetic oligonucleotide probes, in: “In Situ Hybridization Applications For The Brain,” W. Wisden, ed., Academic Press, San Diego, CA (1993).Google Scholar
  35. 35.
    Y.-S. Ho and J.D. Crapo, cDNA and deduced amino acid sequence of rat copper-zinc-containing superoxide dismutase, Nucleic Acids Res. 15: 6746 (1987).Google Scholar
  36. 36.
    Y.S. Ho, Nucleotide sequence of cDNAs coding for rat manganese-containing superoxide dismutase, Nucleic Acids Res.15:10070 (1987).Google Scholar
  37. 37.
    D.L. Felten, S.Y. Felten, R.W. Fuller, T.D. Romano, E.B. Smalstig, D.T. Wong, and J.A. Clemens, Chronic dietary pergolide preserves nigrostriatal neuronal integrity in aged-Fischer-344 rats, Neurobiol. Aging. 13: 339 (1992).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Lawrence R. Williams
    • 1
  • Donald B. Carter
    • 2
  • Edwige Dunn
    • 2
  • James R. Connor
    • 3
  1. 1.Neurobiology, 5-1-A-238AMGEN, Inc. 1840 DeHavilland DriveThousand OaksUSA
  2. 2.CNS Diseases ResearchThe Upjohn Co.KalamazooUSA
  3. 3.Department of Neuroscience and AnatomyHershey Medical CenterPenn State HersheyUSA

Personalised recommendations