Advertisement

NGF Rescues Cholinergic Cell Bodies of the Primate Nucleus Basalis of Meynert and Induces Compensatory Synaptic Changes in Cortically-Lesioned Rats

  • A. Claudio Cuello
Part of the Advances in Behavioral Biology book series (ABBI, volume 44)

Abstract

Amelioration of cholinergic dysfunction in Alzheimer’s disease remains an important therapeutic goal because of the consequences of cholinergic deficits on higher functions. Current therapeutic strategies have been concentrated on the development of new, less toxic and more efficacious anticholinesterases and also muscarinic agents.1 Improvement of cholinergic transmission is a clinical objective aimed at compensating for deficit in acetylcholine levels in the cerebral cortex resulting from attrition of the cholinergic input from the nucleus basalis magnocellularis of Meynert (nbM). However, cholinergic therapy which is based on enhancing the transmitter levels or on administering drugs acting on postsynaptic sites has so far produced only anecdotal improvement. The limitations of this approach are, in part, due to the late appearance of clinical signs at a time when many cortical neurons and nbM cholinergic projections to cortex are already lost.

Keywords

Nerve Growth Factor Cholinergic Neuron Nucleus Basalis Medial Septum Cholinergic Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Giacobini, E., Pharmacotherapy of Alzheimer’s disease: New drugs and novel strategies, in: A.C. Cuello, ed., “Cholinergie Function and Dysfunction, Progress in Brain Research”, Vol. 98, Elsevier, Amsterdam, 55:447–454 (1993).Google Scholar
  2. 2.
    Thoenen, H., The changing scene in neurotrophic factors. Trends Neurosci. 14: 165–170 (1991).PubMedCrossRefGoogle Scholar
  3. 3.
    Hefti, F., Hartikka, J., and Knusel, B. Function of neurotrophic factors in the adult and aging brain and their possible use in the treatment of neurodegenerative diseases, Neurobiol. Aging. 10: 515–533 (1989)PubMedCrossRefGoogle Scholar
  4. 4.
    Cuello, A.C., Trophic responses of forebrain cholinergie neurons: a discussion, in: A.C. Cuello, ed., “Cholinergie Function and Dysfunction, Progress in Brain Research”, Vol.98 (32), Elsevier, Amsterdam, pp. 265–277 (1993).CrossRefGoogle Scholar
  5. 5.
    Bothwell, M., Keeping track of neurotrophine receptors, Cell 65: 915–918 (1991).PubMedCrossRefGoogle Scholar
  6. 6.
    Ebendal, T., Function and evolution in the NGF family and its receptors. J. Neurosci. Res. 32, 461–470 (1992).PubMedCrossRefGoogle Scholar
  7. 7.
    Sofroniew, M.V., Pearson, R.C., Eckenstein, F., Cuello, A.C., and Powell, T.P. Retrograde changes in cholinergie neurons in the basal forebrain of the rat following cortical damage. Brain Res. 289: 370–374 (1983).PubMedCrossRefGoogle Scholar
  8. 8.
    Garofalo, L., Ribeiro-da-Silva, A., and Cuello, A.C. Nerve growth factor-induced synaptogenesis and hypertrophy of cortical cholinergie terminals. Proc. Natl. Acad. Sei. USA, 89: 2639–2643 (1992).CrossRefGoogle Scholar
  9. 9.
    Stephens, P.H., Cuello, A.C., Sofroniew, M.V., Pearson, R.C., and Tagari, P., Effect of unilateral decortication on choline acetyltransferase activity in the nucleus basalis and other areas of the rat brain. J. Neurochem. 45: 1021–1026 (1985).PubMedCrossRefGoogle Scholar
  10. 10.
    Cuello, A.C., Garofalo, L., Kenisberg, R.L., and Maysinger, D., Gangliosides potentiate in vivo and in vitro effects of nerve growth factor on central cholinergic neurons. Proc. Natl. Acad. Sci., USA, 86: 2056–2060 (1989).PubMedCrossRefGoogle Scholar
  11. 11.
    Hefti, F., Nerve growth factor (NGF) promotes survival of septal cholinergic neurones after fimbria fornix transection. J. Neurosci. 6: 2155–2162 (1986).PubMedGoogle Scholar
  12. 12.
    Kromer, L.F., Nerve growth factor treatment after brain injury prevents neuronal death, Science 235: 214–216 (1987).PubMedCrossRefGoogle Scholar
  13. 13.
    Williams, L., Varon, S., Peterson, G., Wictorin, K., Fischer, W., Bórklund, A., and Gage, F., Continuous infusion of nerve growth factor prevents basal forebrain neuronal death after fimbria fornix transection. Proc. Natl. Acad. Sci., USA., 83: 9231–9235 (1986).PubMedCrossRefGoogle Scholar
  14. 14.
    Tuszynski, M.H., Sang, U.H., Amaral, D.G., and Gage, F., Nerve growth factor infusion in the primate brain reduces lesion-induced neural degeneration. J. Neurosci. 10: 3604–3614 (1990).PubMedGoogle Scholar
  15. 15.
    Tuszynski, M.H., Sang, U.H., Yoshida, K., and Gage, F.H. Recombinant human growth factor infusions prevent cholinergic neural degeneration in the adult primate brain. Ann. Neurol., 30: 625–636 (1991).PubMedCrossRefGoogle Scholar
  16. 16.
    Koliatsos, V.E., Nauta, H.J.W., Clatterbuck, R.E., Holtzman, D.M., Mobley, W.C., and Price, D.L. Mouse nerve growth factor prevents degeneration of axotomized basal forebrain cholinergic neurons in the monkey. J. Neurosci. 10: 3801–3813 (1990).PubMedGoogle Scholar
  17. 17.
    Koliatsos, V.E., Clatterbuck, R.E., Nauta, H.J.W., Knüsel, B., Burton, L.E., Hefti, F.F., Mobley, W.C., and Price, D.L., Human nerve growth factor prevents degeneration of basal forebrain cholinergic neurons in primates. Ann. Neurol. 30: 831–840 (1991).PubMedCrossRefGoogle Scholar
  18. 18.
    Pioro, E.P., Maysinger, D., Ervin, F.R., Desypris, G., and Cuello, A.C., Primate nucleus basalis of Meynert p75’“-containing cholinergic neurons are protected from retrograde degeneration by the ganglioside GM1. Neuroscience 53 (1): 49–56 (1993).PubMedCrossRefGoogle Scholar
  19. 19.
    Mesulam, M.-M., Mufson, E.J., Levey, A.I., and Wainer, B.H., Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey, J. Comp. Neurol. 214: 170–197 (1983).PubMedCrossRefGoogle Scholar
  20. 20.
    Liberini, P., Pioro, E.P., Maysinger, D., Ervin, F.R., and Cuello, A.C., Long-term protective effects of human recombinant nerve growth factor and monosialoganglioside GM1 treatment on primate nucleus basalis cholinergic neurons after neocortical infarction, Neuroscience 53: 625–637 (1993).PubMedCrossRefGoogle Scholar
  21. 21.
    Butcher, L.L., and Woolf, N.J. Neurotrophic agents may exacerbate the pathologic cascade of Alzheimer’s disease, Neurobiol. Aging, 10: 557–570 (1989).PubMedCrossRefGoogle Scholar
  22. 22.
    Fisher, W., Wictorin, K., Bjorklund, A., Chen, K., and Gage, F.J., NGF improves spatial memory in aged rodents as a function of age, J. Neurosci. 11: 1889–1906 (1991).Google Scholar
  23. 23.
    Williams, L.R., Rylett, R.J., Ingram, D.K., Joseph, J.A., Moises, H.C., Tang, A.H., and Mervis, R.F. Nerve growth factor affects the cholinergic neurochemistry and behavior of aged rats, in: A.C. Cuello ed., “Cholinergic Function and Disfunction, Progress in Brain Research”, Vol. 98, Elsevier, Amsterdam, 30:251–256 (1993).Google Scholar
  24. 24.
    Garofalo, L., and Cuello, A.C., Nerve growth factor and the monosialoganglioside GM1: analogous and different in vivo effects on biochemical, morphological, and behavioral parameters of adult cortically lesioned rats. Exp. Neurol. 125: 195–217 (1994).PubMedCrossRefGoogle Scholar
  25. 25.
    Maysinger, D., Jalsenjak, I., and Cuello, A.C., Microencapsulated nerve growth factor: effects on the forebrain neurons following devascularizing cortical lesions, Neurosci. Lett. 140: 71–74 (1992).PubMedCrossRefGoogle Scholar
  26. 26.
    Gage, F.H., Kawaja, M.D. and Fisher, L.J. Genetically modified cells: applications for intracerebral grafting. Trends Neurosci. 14: 328–333 (1992) (1991)Google Scholar
  27. 27.
    Piccardo, P., Maysinger, D. and Cuello, A.C. (1992) Recovery of nucleus basalis cholinergic neurons by grafting NGF secretor fibroblasts. Neuro. Rep. 3: 353–356.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • A. Claudio Cuello
    • 1
  1. 1.Department of Pharmacology and TherapeuticsMcGill UniversityMontrealCanada

Personalised recommendations