Advertisement

CI-1002, a Novel Anticholinesterase and Muscarinic Antagonist

  • Mark R. Emmerling
  • Vlad E. Gregor
  • Roy D. Schwarz
  • Jeff D. Scholten
  • Michael J. Callahan
  • Chitase Lee
  • Catherine J. Moore
  • Charlotte Raby
  • William J. Lipinski
  • Robert E. Davis
Part of the Advances in Behavioral Biology book series (ABBI, volume 44)

Abstract

The “cholinergic deficit hypothesis” provided the first theoretical framework for developing rational, palliative treatments for the cognitive loss associated with Alzheimer’s Disease (AD). The hypothesis arose from the synthesis of several lines of evidence showing the importance of central cholinergic function to normal cognition, and the relationship between AD dementia and the loss of cholinergic innervation to the neocortex and hippocampus (for a review see Davis et al., 1993). The “hypothesis” led to the testing of agents to restore central cholinergic function. A variety of replacement therapies were tried including inhibitors of acetylcholinesterase (AChE) to increase brain levels of acetylcholine. Initial studies using the anticholinesterase physostigmine provided suggestive evidence that such an approach might be beneficial (for a review see Kumar and Calache, 1991). However, early clinical results with tacrine (THA, Cognex®) sparked the effort to evaluate thoroughly the efficacy of cholinesterase inhibitors in the treatment of AD.

Keywords

Muscarinic Receptor AChE Activity Muscarinic Antagonist Aged Monkey Peripheral Anionic Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashour, A., Gee, S. J., and Hammock, B. D., 1987, Use of a 96-well microplate reader for measuring enzyme activities, Anal. Biochem. 166: 353.PubMedCrossRefGoogle Scholar
  2. Berridge, M. J., Downes, C. P., and Hanley, M. R., 1982, Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands, Biochem. J. 206: 587.PubMedGoogle Scholar
  3. Davis, K. L., Thal, L. J., Gamzu, E. R., Davis, C. S., Woolson, R. F., Gracon, S. I., Drachman, D. A., Schneider, L. S., Whitehouse, P. J., Hoover, T. I., Morris, J. C., Kawas, C. H., Knopman, D. S., Earl, N. L., Kumar, V. and Doody, R. S., 1992, A double-blind, placebo-controlled multicenter study of tacrine for Alzheimer’s Disease, New Engl. J. Med. 327: 1253.PubMedCrossRefGoogle Scholar
  4. Davis, R. E., Emmerling, M.R., Jaen, J. C., Moos, W. H. and Spiegel, K., 1993, Therapeutic intervention in dementia, Crit. Rev. Neurobiol. 7: 41.PubMedGoogle Scholar
  5. Duggleby, R. G., 1988, Determination of inhibition constants, IC50 values and the type of inhibition for enzyme-catalyzed reactions, Med. Metab. Biol. 40: 204.CrossRefGoogle Scholar
  6. Emmerling, M. R., and Sobkowicz, H. M., 1988, Differentiation and distribution of acetylcholinesterase molecular forms in the mouse cochlea, Hearing Res. 32: 137.CrossRefGoogle Scholar
  7. Farlow, M., Gracon, S. I., Hershey, L. A., Lewis, K. W., Sadowsky, C. H., and Dolan-Ureno, J., 1992, A controlled trial of tacrine in Alzheimer’s Disease, JAMA 268: 2523.PubMedCrossRefGoogle Scholar
  8. Johnson, C. D. and Russell, R. L., 1975, A rapid, simple radiometric assay for cholinesterase for multiple determinations, Anal. Biochem. 64: 229.PubMedCrossRefGoogle Scholar
  9. Krupka, R. M. and Ladler, K. J., 1961, Molecular mechanisms for hydrolytic enzyme action. I. Apparent noncompetitive inhibition with a special reference to acetylcholinesterase, J. Amer. Chem. Soc. 83: 1445.CrossRefGoogle Scholar
  10. Kumar, V., and Calache, M., 1991, Treatment of Alzheimer’s disease with cholinergic drugs, Int. J. Clin. Pharm. Ther. Tox. 29: 23.Google Scholar
  11. Summers, W. K., Majovski, L. V., Marsh, G. M., Tachiki, K., and Kling, A., 1986, Oral tetrahydroaminoacridine in long-term treatment of senile dementia, Alzheimer’s type, New. Engl. J. Med. 315: 1241.PubMedCrossRefGoogle Scholar
  12. Sussman, J. L., Harel, M., Frolow, F., Oefner, C., Goldman, A., Toker, L., and Silman, I., 1991, Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein., Science 253: 872.PubMedCrossRefGoogle Scholar
  13. Symons, J. P., Davis, R. E., and Marriott, J. G., 1988, Water-maze learning and effects of cholinergic drugs in mouse strains with high and low hippocampal pyramidal cell counts, Life. Sci. 42: 375.PubMedCrossRefGoogle Scholar
  14. Ungerstedt, U., 1987, In vivo microdialysis: A new approach to the analysis of neurotransmitters in the brain, Life Sci. 41: 861.PubMedCrossRefGoogle Scholar
  15. Watson, M., Yamamura, H., and Roeske, W. R., 1986, [3H]pirenzepine and (-)-[311]quinuclidinyl benzilate binding to rat cerebral cortical and cardiac muscarinic cholinergic sites. II. Characterization and regulation of antagonist binding to putative muscarinic subtypes, J. Pharmacol. Exp. Ther. 237: 4114.Google Scholar
  16. Wimer, R., and Wimer, C. C., 1981, A biometrical-genetic analysis of granule cell number in the area dentate of house mice, Brain Res. 254: 129.PubMedGoogle Scholar
  17. Xu, M., Nakamura, Y., and Yamamoto, T., 1991, Determination of basal acetylcholine release in vivo by rat brain dialysis with a U - shaped cannula: Effect of SM-10888, a putative therapeutic drug for Alzheimer’s disease, Neurosci. Leu. 123: 179.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Mark R. Emmerling
    • 1
  • Vlad E. Gregor
    • 1
  • Roy D. Schwarz
    • 1
  • Jeff D. Scholten
    • 1
  • Michael J. Callahan
    • 1
  • Chitase Lee
    • 1
  • Catherine J. Moore
    • 1
  • Charlotte Raby
    • 1
  • William J. Lipinski
    • 1
  • Robert E. Davis
    • 1
  1. 1.Parke-Davis, Pharmaceutical ResearchDivision of Warner-LambertAnn ArborUSA

Personalised recommendations