“Kangenkaryu”, Chinese Herb Medicine, Improved Several Symptoms in Animal Models

  • Kiminobu Sugaya
  • Kihiro Matsunaga
  • Yasuo Sei
  • Michael Mckinney
Part of the Advances in Behavioral Biology book series (ABBI, volume 44)


“Kangenkaryu” (KAN) is an extract from CYPERI RHIZOMA (Cyperus Rhizome),CNIDII RHIZOMA (Cnidium Rhizome), PAEONIAE RADIX (Peony Root), CARTHAMI FLOS (Safflower), SAUSSUREAE RADIX (Saussurea Root) and SALVIAE MILTIOR- RHIZAE RADIX (Salvia Root)1. It is a commonly-used herbal treatment for symptoms related to blood circulation deficiencies, and its use is based on the theory of Chinese traditional medicine. It is reputed to reduce blood and plasma viscosity, and thus improve micro-circulation.2


Basal Forebrain ChAT Activity Ibotenic Acid Nucleus Basalis Magnocellularis Cortical Blood Flow 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.H. Jiao, Crinical Trial Test of Kanjin II in Gou Shi Kui Chinese Medical Center of Aging, Chinese Trad. Patent Med. 12: 23 (1990).Google Scholar
  2. 2.
    H. Takahashi, Clinical Trial of Prescription of Kaketsukeo, Clin. J. Chinese Med. 12: 145–151 (1991).Google Scholar
  3. 3.
    T. Takeda, M. Hosokawa, and S. Takeshita, A new murine model of accelerated senescence, Mech. Aging Dev. 17: 183–194 (1981).PubMedCrossRefGoogle Scholar
  4. 4.
    M. Hosokawa, R. Kasai, and K. Higuchi, Grading score system: A method for evaluation of the degree of senescence in senescence accelerated mouse (SAM), Mech. Aging Dev. 26:91–102 (1984.).Google Scholar
  5. 5.
    S. Takeshita, M. Hosokawa, and M. Inno, Spontaneous age-associated amyloidosis in senescence-accelerated mouse (SAM), Mech. Aging Dev. 20: 13–23 (1982).PubMedCrossRefGoogle Scholar
  6. 6.
    M. Miyamoto, Y. Kiyota, and N. Yamazaki, Age-related changes in learning and memory in the senescence-accelerated mouse (SAM), Physiol. Behay. 38: 399–406 (1986).CrossRefGoogle Scholar
  7. 7.
    H. Yagi, M. Inno, T. Matsushima, and T. Takeda, Spontaneous Spongy Deneration of the Brain Stem in SAM-P/8 Mice, a Newly Developed Memory-Deficient Strain, J. Neuropathol. Exp. Neurol. 48: 577–590 (1989).PubMedCrossRefGoogle Scholar
  8. 8.
    A.J.A.M. Dekker, D.J. Connor, and L.J. Thal, The role of Cholinergic Projections From the Nucleus Basalis in Memory, Neurosci. Biobehay. Rev. 15: 299–317 (1991).CrossRefGoogle Scholar
  9. 9.
    M.V. Johnston, M. McKinney, and J.T. Coyle, Evidence for a cholinergic projection to neocortex from neurons in basal forebrain, Proc. Natl. Acad. Sci. USA 76: 5392–5396 (1979).PubMedCrossRefGoogle Scholar
  10. 10.
    J. Lehmann, J.I. Magy, S. Atmadja, and H.C. Fibger, The nucleus basalis magnocellularis: the origin of a cholinergic projection to the neocortex of the rat. Neuroscience 5, 1161–1174 (1980)PubMedCrossRefGoogle Scholar
  11. 11.
    P. Etienne, Y. Robitaille, P. Wood, S. Gauthier, N.P.V. Nair, and R. Quirion, Nucleus basalis neuronal loss, neuritic plaques and choline acetyltransferase activity in advanced Alzheimer’s Disease. Neuroscience 19, 1279–1291 (1986).PubMedCrossRefGoogle Scholar
  12. 12.
    G. Wenk, and D.S. Olton, Basal forebrain cholinergic neurons and Alzheimer’s Disease, in: “In Animal Models of Dimentia”, J.T. Coyle, ed. Alan R. Liss, New York, 81–101, (1987).Google Scholar
  13. 13.
    E.M. Meyer, G.W. Arendash, J.H. Judkins, L. Ying, C. Wade, and W.R. Kem, Effects of nucleus basalis lesion on the muscarinic and nicotinic modulation of PIl-acethylcholine release from the rat cerebral cortex, J. Neurochem. 49: 1758–1762 (1987).PubMedCrossRefGoogle Scholar
  14. 14.
    G.W. Arendash, W.J. Millard, A. Dunn, and E.M. Meyer, Longterm neuropathological and neurochemical effects of nucleus basalis lesions in the rat, Science 238: 952–956 (1987).PubMedCrossRefGoogle Scholar
  15. 15.
    J.D. Salamone, P.M. Beart, J.E. Alpert, and S.D. Iverson, Impairment in T-maze reinforced alternation performance following nucleus basalis magnocellularis lesions in rat, Behay. Brain. Res. 13: 63–70 (1984).CrossRefGoogle Scholar
  16. 16.
    M. Uchiyama, and M. Mihara, Determination of malonaldehyde precursor in tissues by thiobarbituric acid test, Anal. Biochem. 86: 271–278 (1978).PubMedCrossRefGoogle Scholar
  17. 17.
    K. Haba, N. Ogawa, M. Kawata, and A. Mori, A Method for Parallel Determination fo Choine Acetyltransferase and Muscarinic Cholinergic Receptors: Application in Aged-Rat Brain, Neurochem. Res. 13: 951–955 (1988).PubMedCrossRefGoogle Scholar
  18. 18.
    D.G. Linville, and S. P. Ameri, Cortical cerebral Blood Flow Governed by the Basal Forebrain: Age-Related Impairments, Neurobiol. Aging 12, 503–510 (1991).PubMedCrossRefGoogle Scholar
  19. 19.
    D. J. Reis, and C. ladecola, Central neurogenic regulation of cerebral blood flow, in: “Neurotransmission and cerebrovascular function”, J. Seylaz and R. Sercombe, eds., Elsevier Science Publishers Bioedical Division, New York, 369–390 (1989).Google Scholar
  20. 20.
    A.M. May, and S.P. Arneric, Effects of basal forebrain lesions and cholinomimetics on cerebral cortical microvascular perfusion (CCMP) in rat: continuous measurement by laser-doppler flowmetry, Soc. Neurosci. Abstr. 13: 288. 12 (1987).Google Scholar
  21. 21.
    The Japanese Pharmacopoeia (in Japanese).Google Scholar
  22. 22.
    M. Igarashi, H. Kanno, K. Tanaka, T. Asada, R. Yamaguchi, T. Shirai, M. Yamanaka, K. Namiki, and M. Namiki, Preventive Function of Substances in the Pyrazine Class against Blood Platelet Aggregation, J. Med. Soc. Toho Univ. 33:261–264 (1986). (Abs. in English)Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Kiminobu Sugaya
    • 1
  • Kihiro Matsunaga
    • 2
  • Yasuo Sei
    • 2
  • Michael Mckinney
    • 1
  1. 1.Neuropharmacology ResearchMayo Clinic JacksonvilleJacksonvilleUSA
  2. 2.Iskra Industry Co., Ltd.Chuo-ku Tokyo 103Japan

Personalised recommendations