Advertisement

Transient Alterations in the in Vivo Levels of Cholinesterase mRNAS Suggest Differential Adjustment to Cholinotoxic Stimuli

  • E. Lev-Lehman
  • A. El-Tamer
  • D. Ginzberg
  • I. Hanin
  • H. Soreq
Part of the Advances in Behavioral Biology book series (ABBI, volume 44)

Abstract

Numerous diseases of the central nervous system (CNS) are associated with cholinergic deficits, Alzheimer’s disease being a notable example of such neurodegenerative disorders (Wurtman, 1992). To dissect the molecular mechanisms involved in the impairment of cholinergic neurotransmission in this and other CNS diseases, experimental approaches should be pursued which combine in vivo model systems with sensitive, multileveled detection methods.

Keywords

Cholinergic Neuron Cholinergic Neurotransmission ChAT Activity Medial Septal Nucleus Actin mRNA Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Butcher, L.L., Oh, J.D., and Woolf, N.J., 1993, Cholinergic neurons identified by in situ hybridization histochemistry, in: “Progress in Brain Research,” A.C. Cuello, ed., Elsevier Science Publishers B. V. Amsterdam, pp. 1.Google Scholar
  2. Chrobak, J.J., Hanin, I., and Walsh, T.S., 1987, AF64A (ethylcholine aziridinium ion), a cholinergic neurotoxin, selectively impairs working memory in a multiple component T - maze task, Brain Res. 414: 15.PubMedCrossRefGoogle Scholar
  3. Chrobak, J.J., Hanin, I., Schmechel, D.E., and Walsh, T.S., 1988, AF64A - induced memory impairment. Behavioral, neurochemical and histological correlates, Brain Res. 463: 107.PubMedCrossRefGoogle Scholar
  4. El-Tamer, A., Corey, J., Wulfert, E., and Hanin, I. (1992). Reversible cholinergic changes induced by AF64A in rat hippocampus and possible septal compensatory effect, Neuropharmacology 31: 397.PubMedCrossRefGoogle Scholar
  5. Fisher, A., and Hanin, I., 1980, Minireview: Choline analogs as potential tools in developing sensitive animal models of central cholinergic hypofunction, Life Sci. 27: 1615.PubMedCrossRefGoogle Scholar
  6. Futscher, B.W., Pieper, O., Barnes, D.M., Hanin, I., and Erickson, L.C., 1992, DNA - damaging and transcription - terminating lesions induced by AF64A in vitro, J. Neurochem. 58: 1504.PubMedCrossRefGoogle Scholar
  7. Hanin, I., Fisher, A., Hortnagl, H., Leventer, S.M., Potter, P.E., and Walsh, T.J., 1987, Ethylcholine aziridinium (AF64A; ECMA) and other potential cholinergic neuron - specific neurotoxins, in: “Psychopharmacology: The Third Generation of Progress,” H.Y. Meltzer, ed., Raven Press, New York.Google Scholar
  8. Hanin, I., Yaron, A., Ginzberg, D., and Soreq, H., AF64A attenuates human acetylcholinesterase (ACHE) and butyrylcholinestrase (BCHE) gene transcription in vitro. This book.Google Scholar
  9. Heimer, L. (1983). The Human Brain and Spinal cord. Functional neuroanatomy and dissection guide. Springer-Verlag Inc. New York.Google Scholar
  10. Karpel, R., Ben Aziz-Aloya, R., Sternfeld, M., Ehrlich, G., Ginzberg, D., Tarroni, P., Clementi, F., Zakut, H., and Soreq, H. Expression of 3 alternative acetylcholinesterase messenger RNAs in human tumor cell lines of different tissue origins, Exp. Cell Res,in press.Google Scholar
  11. Kuhar, M.J., Sethy, V.H., Roth, R., and Aghajanian, G.K., 1973, Choline: selective accumulation by central cholinergic neurons, J. Neurochem. 20: 581.PubMedCrossRefGoogle Scholar
  12. Lapidot-Lifson, Y., Patinkin, D., Prody, C., Ehrlich, G., Seidman, S., Ben-Aziz Aloya, R., Benseler, F., Eckstein, F., Zakut, H., and Soreq, H., 1992, Cloning and antisense oligodeoxynucleotide inhibition of a human homolog of cdc2 required in hematopoiesis, Proc. Natl. Acad. Sci. USA 89: 579.PubMedCrossRefGoogle Scholar
  13. Legay, C., Bon, S., Vernier, P., Coussen, F., and Massoulie, J., 1993, Cloning and expression of a rat acetylcholinesterase subunit: generation of multiple molecular forms and complementarity with a Torpedo collagenic subunit, J. Neurochem. 60: 337.PubMedCrossRefGoogle Scholar
  14. Lev-Lehman, E., Ginzberg, D., Hornreich, G., Ehrlich, G., Mesborer, A., Eckstein, F., Soreq, H., and Zakut, H., 1993, Antisense inhibition of Acetylcholinesterase gene expression causes transient hematopoietic alterations in vivo. Gene Therapy 1: 1.Google Scholar
  15. Lewis, P., and Shute, C.C.D., 1967, The cholinergic limbic system projection to hippocampal formation, medial cortex, nuclei of ascending cholinergic reticular system, and subfornical organ and supra - optic crest, Brain. 90: 521.PubMedCrossRefGoogle Scholar
  16. McGurk, S.R., Hartgraves, S.L., Kelly, P.H., Gordon, M., and Butcher, L.L., 1987, Is ethylcholine aziridinium ion a specific cholinergic neurotoxin? Neuroscience 22: 215.PubMedCrossRefGoogle Scholar
  17. Nudel, U., Zakut, R., Shani, M., Neuman, S., Levy, Z., and Yaffe, D., 1983, The nucleotide sequence of the rat cytoplasmic beta-actin gene, Nucl. Acids. Res. 11: 1759.PubMedCrossRefGoogle Scholar
  18. Sandberg, K., Schnaar, R.L., McKinney, M., Hanin, I., Fisher, A., and Coyle, J.T., 1985, AF64A: an active site directed irreversible inhibitor of choline acetyltranferase, J. Neurochem. 44: 439.PubMedCrossRefGoogle Scholar
  19. Wurtman, R.J., 1992, Choline metabolism as a basis for the selective vulnerability of cholinergic neurons, Trends in Neurosci. 15: 117.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • E. Lev-Lehman
    • 1
  • A. El-Tamer
    • 2
  • D. Ginzberg
    • 1
  • I. Hanin
    • 2
  • H. Soreq
    • 1
  1. 1.Department of Biological Chemistry The Life Sciences InstituteThe Hebrew UniversityJerusalemIsrael
  2. 2.Department of PharmacologyLoyola University Chicago Stritch School of MedicineMaywoodUSA

Personalised recommendations