Advertisement

Calcium Binding Proteins Differentiate Midbrain Dopaminergic Systems in Humans

  • Deborah A. McRitchie
  • Glenda M. Halliday
Part of the Advances in Behavioral Biology book series (ABBI, volume 44)

Abstract

Calbindin-D-28k, parvalbumin and calretinin are members of the EF-hand family of calcium-modulated proteins (Persechini et al., 1989). As these proteins are cytosolic (Pasteels et al., 1986), they have been used widely as anatomical markers to elucidate the morphology of the neurons in which they reside. Previous studies in the rat have found that these calcium binding proteins are distributed widely throughout the central nervous system in exclusive populations of neurons (Celio, 1990; Arai et al., 1991; Résibois and Rogers, 1992; Rogers, 1992). Within the substantia nigra (A9), calbindin and calretinin are found in the pars compacta (Celio, 1990; Arai et al., 1991; Résibois and Rogers, 1992; Rogers, 1992), while parvalbumin and calretinin are localized within the pars reticulata (Celio, 1990; Arai et al., 1991; Résibois and Rogers, 1992; Rogers, 1992). More specifically, calbindin and calretinin are present in the dorsal tier (Gerfen et al., 1987; Celio, 1990; Rogers, 1992) of the pars compacta with up to 28% of neurons containing both proteins (Rogers, 1992). In contrast, calretinin alone is found in the ventral tier (Rogers, 1992). Within the retrorubral fields (A8), all three of these calcium binding proteins are found (Celio, 1990; Rogers, 1992). A large proportion of neurons in the A10 cell groups colocalize both calbindin and calretinin (Rogers, 1992). Neurons within these distinct groups have differential projections to matrix and patch components of the striatum (Gerfen et al., 1987; Jimenez-Castellanos and Graybiel, 1987).

Keywords

Substantia Nigra Calcium Binding Protein Multipolar Neuron Differential Projection Dorsal Tier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arai, R., Winsky, L., Arai, M., and Jacobowitz, D.M., 1991, Immunohistochemical localization of calretinin in the rat hindbrain, J. Comp. Neurol. 310: 21–44.PubMedCrossRefGoogle Scholar
  2. Baimbridge, K.G., Celio, M.R., and Rogers, J.H., 1992, Calcium-binding proteins in the nervous system, Trends Neurosci. 15: 303–308.PubMedCrossRefGoogle Scholar
  3. Celio, M.R., 1990, Calbindin D-28k and parvalbumin in the rat nervous system, Neuroscience 35: 375–475.PubMedCrossRefGoogle Scholar
  4. Foumet, N., Garcia-Segura, L.M., Norman, A.W., and Orci, L., 1986, Selective localization of calcium-binding protein in human brainstem, cerebellum and spinal cord, Brain Res. 399: 310–316.CrossRefGoogle Scholar
  5. Gerfen, C.R., Herkenham, M., and Thibault, J., 1987, The neostriatal mosaic: II. patch-and matrix directed mesostriatal dopaminergic and non-dopaminergic systems, J. Neurosci. 7: 3915–3934.PubMedGoogle Scholar
  6. German, D.C., Manaye, K.Y., Sonsalla, P.K. and Brooks, B.A., 1992, Midbrain dopaminergic cell loss in Parkinson’s disease and MPTP-induced parkinsonism: sparing of calbindin-Dm-containing cells, Ann. NY Acad. Sci. USA 648: 42–62.CrossRefGoogle Scholar
  7. Gibb, W.R.G., 1992, Melanin, tyrosine hydroxylase, calbindin and substance P in the human midbrain and substantia nigra in relation to nigrostriatal projections and differential neuronal susceptibility in Parkinson’s disease, Brain Res. 581: 283–291.PubMedCrossRefGoogle Scholar
  8. Ince, P., Stout, N., Shaw, P., Slade, J., Hunziker, W., Heizmann, C.W., and Baimbridge, K.G., 1993, Parvalbumin and calbindin D-28k in the human motor system and in motor neuron disease, Neuropathol. Appl. Neurobiol. 19: 291–299.PubMedCrossRefGoogle Scholar
  9. Jimenez-Castellanos, J., and Graybiel, A.M., 1987, Subdivisions of the dopamine-containing A8–A9–A10 complex identified by their differential mesostriatal innervation of striosomes and extrastriosomal matrix, Neuroscience 23: 223–242.PubMedCrossRefGoogle Scholar
  10. Mattson, M.P., Rychlik, B., Chu, C., and Christakos, S., 1991, Evidence for calcium-reducing and excitoprotective roles for the calcium-binding protein calbindin-D,sk in cultured hippocampal neurons, Neuron 6: 41–51.PubMedCrossRefGoogle Scholar
  11. Pasteels, J.L., Pochet, R., Surdat, L., Hubeau, C., Chimoaga, M., Parmentier, M., and Lawson, D.E.M.Google Scholar
  12. Ultrastructural localization of brain ‘vitamin D-dependent’ calcium binding proteins, Brain Res. 384: 294–303.Google Scholar
  13. Persechini, A., Moncrief, N.D., and Kretsinger, R.H., 1989, The EF-hand family of calcium modulating proteins, Trends Neurosci. 12: 462–467.PubMedCrossRefGoogle Scholar
  14. Résibois, A., and Rogers, J.H., 1992, Calretinin in rat brain: an immunohistochemical study, Neuroscience 46: 101–134.PubMedCrossRefGoogle Scholar
  15. Rogers, J.H., 1992, Immunohistochemical markers in the rat brain: colocalization of calretinin and calbindinD28k with tyrosine hydroxylase, Brain Res. 587: 203–210.PubMedCrossRefGoogle Scholar
  16. Yamada, T., McGeer, P.L., Baimbridge, K.G., and McGeer, E.G., 1990, Relative sparing in Parkinson’s disease of substantia nigra dopamine neurons containing calbindin-D28K, Brain Res. 526: 303–307.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Deborah A. McRitchie
    • 1
  • Glenda M. Halliday
    • 1
  1. 1.Prince of Wales Medical Research InstitutePrince of Wales HospitalRandwickAustralia

Personalised recommendations