Acetylcholinesterase is Not a Protease: Implications for Alzheimer’s Disease

  • Mark R. Emmerling
  • Jacques Grassi
  • Richard T. Carroll
Part of the Advances in Behavioral Biology book series (ABBI, volume 44)


Acetylcholinesterase (AChE) has been alleged for over a decade to possess a protease activity. The activity was first described in purified eel AChE from commercial suppliers and bovine serum AChE (Chubb et al., 1980; Chubb et al., 1983). Two protease activities appear to reside with the AChE, a trypsin-like endopeptidase and a carboxypeptidase (Small et al., 1987; Small, 1988). The protease activity is difficult to remove from the AChE indicating that it is either tightly bound or intrinsic to the enzyme (Small, 1989; Small, 1990). However, a recent report suggests that bovine serum AChE is reversibly associated with a protease activity (Michaelson and Small, 1993).


High Performance Liquid Chromatography Protease Activity AChE Activity Velocity Sedimentation Electric Organ 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Araki, W., Nakamura, S., Tanaka, S., Kimura, J., and Ueda, K., 1991, Separation of protras activity from acetylcholinesterase of the electric eel, Neurochem. Int. 19: 537.CrossRefGoogle Scholar
  2. Ashour, M.-B. A., Gee, S. J., and Hammock, B. D., 1987, Use of a 96-well microplate reader for measuring enzyme activities, Anal. Biochem. 166: 353.PubMedCrossRefGoogle Scholar
  3. Carroll, R. T., and Emmerling, M. R., 1991, Identification of the trypsin-like activity in commercial preparations cf eel.cctylchalinesterase, Biochem. Biophys. Res. Commun. 181: 858.PubMedCrossRefGoogle Scholar
  4. Checler, F., and Vincent, J. P., 1989, Peptidasic activities associated with acetylcholinesterase are due to contaminating enzymes, J Neurochem. 53: 924.PubMedCrossRefGoogle Scholar
  5. Chubb, I. W., Hodgson, A. J., and White, G. H., 1980, Acetylcholinesterase hydrolyzes substance P, Neuroscience 5: 2065.PubMedCrossRefGoogle Scholar
  6. Chubb, I. W., Ranieri, E., White, G. H., and Hodgson, A. J., 1983, The enkephalins are amongst the peptides hydrolyzed by purified acetylcholinesterase, Neuroscience 10: 1369.PubMedCrossRefGoogle Scholar
  7. Dowton, M., and Boelen, M., 1988, Acetylcholinesterase converts MetS-enkephalin-containing peptides to MetS-enkephalin, Neurosci Lett. 94: 151.PubMedCrossRefGoogle Scholar
  8. Dudai, Y., Sidman, I., Shinitzky, M., and Blumberg, S., 1972, Purification by affinity chromatography of the molecular forms of acetylcholinesterase present in fresh electric-organ tissue of electric eel., Proc. Natl. Acad. Sci. 69: 2400.PubMedCrossRefGoogle Scholar
  9. Emmerling, M. R., and Sobkowicz, H. M., 1988, Differentiation and distribution of acetylcholinesterase molecular forms in the mouse cochlea, Hearing Res. 32: 137.CrossRefGoogle Scholar
  10. Grassi, J., Frobert, Y., Lamourette, P., and Lagoutte, B., 1988, Screening of monoclonal antibodies using antigens labeled with acetylcholinesterase: application to the peripheral proteins of photosystem, Anal. Biochem. 168: 436.PubMedCrossRefGoogle Scholar
  11. Inestrosa, N. C., Roberts, W. L., Marshall, T. L., and Rosenberry, T. L., 1987, Acetylcholinesterase from bovine caudate nucleus is attached to membranes by a novel subunit distinct from those of acetylcholinesterases in other tissues, J.Biol.Chem. 262: 4441.PubMedGoogle Scholar
  12. Joachim, C. L., and Selkoe, D. J., 1992, The seminal role of ß-amyloid in the pathogeneis of Alzheimer’s Disease, Alzheimer’s Disease and Assoc. Disorders 6: 7.CrossRefGoogle Scholar
  13. Leuzinger, W., Baker, A. L., and Cauvin, E., 1968, Acetylcholinesterase. II. Crystallization, absorption spectra, isoioniç point., Proc. Natl. Acad. Sci. 59: 620.PubMedCrossRefGoogle Scholar
  14. Massoulie, J., Rieger, F., and Bon, S., 1971, Especes acetylcholinesterasiques globulaires et allongees des organes electriques de possons, Eur. J. Biochem. 14: 430.CrossRefGoogle Scholar
  15. Michaelson, S., and Small, D. H., 1993, A protease is recovered with the dimeric form of acetylcholinesterase in fetal bovine serum., Brain Res. 611: 75.PubMedCrossRefGoogle Scholar
  16. Musset, F., Frobert, Y., Grassi, J., Vigny, M., Boulla, G., Bon, S., Massonlie, J., 1987, Monoclonal antibodies against acetylcholinesterase from the electric organs of Electrophorus and Torpedo, Biochimie 69: 147.PubMedCrossRefGoogle Scholar
  17. Rakonczay, Z., 1988, Cholinesterase and its molecular forms in pathological states, Prog. Neurobiol. 31:311. Rosenberry, T. L., and Scoggin, D. M., 1984, Structure of human erythrocyte acetylcholinesterase. Characterization of intersubunit disulfide bonding and detergent interaction, J. Biol. Chem. 259: 5643.Google Scholar
  18. Small, D. H., 1988, Serum acetylcholinesterase possesses trypsin-like and carboxypeptidase B-like activity, Neurosci Lett. 95: 307.PubMedCrossRefGoogle Scholar
  19. Small, D. H., 1989, Acetylcholinesterases: zymogens of neuropeptide processing enzymes? Neuroscience 29: 241.PubMedCrossRefGoogle Scholar
  20. Small, D. H., 1990, Non-cholinergic actions of acetylcholinesterases: proteases regulating cell growth and development? Trends Biochem. Sci. 15: 213.PubMedCrossRefGoogle Scholar
  21. Small, D. H., and Chubb, I. W., 1988, Identification of a trypsin-like site associated with acetylcholinesterase by affinity labelling with [’H]diisopropyl fluorophosphate, J. Neurochem. 51: 69.PubMedCrossRefGoogle Scholar
  22. Small, D. H., and Simpson, R. J., 1988, Acetylcholinesterase undergoes autolysis to generate trypsin-like activity, Neurosci. Lett. 89: 223.PubMedCrossRefGoogle Scholar
  23. Small, D. H., Ismael, Z., and Chubb, I. W., 1987, Acetylcholinesterase exhibits trypsin-like and metalloexopeptidase-like activity in cleaving a model peptide, Neuroscience 21: 991.PubMedCrossRefGoogle Scholar
  24. Small, D. H., Moir, R. D., Fuller, S. J., Michaelson, S., Bush, A. I., Li, Q. X., Milward, E., Hilbich, C., Weidemann, A., Beyreuther, K., and Masters, C.L., 1991, A protease activity associated with acetylcholinesterase releases the membrane-bound form of the amyloid protein precursor of Alzheimer’s disease, Biochemistry 30: 10795.Google Scholar
  25. Sussman, J. L., Hare!, M., Frolow, F., Oefner, C., Goldman, A., Toker, L., and Silman, I., 1991, Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein., Science 253: 872.PubMedCrossRefGoogle Scholar
  26. Towbin, H., Staehelin, T., and Gordon, J., 1979, Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications, Proc. Natl. Acad. Sci. 76: 4350.PubMedCrossRefGoogle Scholar
  27. Tsim, K. W., Randall, W. R., and Barnard, E. A., 1988, An asymmetric form of muscle acetylcholinesterase contains three subunit types and two enzymic activities in one molecule., Proc. Natl. Acad. Sci., 85: 1262.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Mark R. Emmerling
    • 1
  • Jacques Grassi
    • 2
  • Richard T. Carroll
    • 1
  1. 1.Neuroscience PharmacologyParke-Davis Pharmaceutical ResearchAnn ArborUSA
  2. 2.Service de Pharmacologie et d’ImmunologieC.E. SaclayGif sur YvetteFrance

Personalised recommendations