Distribution and Regulation of Interleukin 1-β Converting Enzyme in Rat and Man

  • Brenda D. Shivers
  • David A. Giegel
  • William J. Lipinski
  • Michael J. Callahan
  • James M. Saunders
  • Leon R. Carlock
  • Paul D. Walker
  • Karen M. Keane
Part of the Advances in Behavioral Biology book series (ABBI, volume 44)


Brain inflammation plays a role in neurodegenerative diseases such as multiple sclerosis1 and Alzheimer’s disease (AD).2 Indeed, anti-inflammatory agents have been proposed as therapy for AD.3 The most prominent cytokine mediating inflammation is interleukin-1β (IL-1β).4 IL-1β is a product of microglia5 (the brain’s resident macrophage), and activated microglia are found in neuritic plaques in AD.6 Furthermore, IL-1β is known to stimulate the production of amyloid precursor protein,7 amyloid being a major constituent of the neuritic plaque.


Down Syndrome Quinolinic Acid Neuritic Plaque Monocytic Cell Line Multiple Antigenic Peptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Steinman, Autoimmune disease, Sci. Am. September: 107 (1993).Google Scholar
  2. 2.
    P.L. McGeer, E.G. McGeer, T. Kawamata, T. Yamada, and H. Akiyama, Reactions of the immune system in chronic degenerative neurological diseases, Can. J. Neurol. Sci. 18: 376 (1991).PubMedGoogle Scholar
  3. 3.
    P.L. McGeer and J. Rogers, Anti-inflammatory agents as a therapeutic approach to Alzheimer’s disease, Neurol. 42: 447 (1992).CrossRefGoogle Scholar
  4. 4.
    C.A. Dinarello, Interleukin 1, Rev. Infra. Dis. 6: 51 (1984).CrossRefGoogle Scholar
  5. 5.
    W.S.T. Griffin, L.C. Stanley, C. Ling, L. White, V. MacLeod, U. Perrot, C.L. White, III, and C. Araoz, Brain interleukin 1 and S-100 immunoreactivity are elevated in Down Syndrome and Alzheimer disPAse, Proc. Nail Acad. Sci. USA 86: 7611 (1989).CrossRefGoogle Scholar
  6. 6.
    S. Itagaki, P.L. McGeer, H. Akiyama, S. Zhu and D. Selkoe, Relationship of microglia and astrocytes to amyloid deposits of Alzheimer disease, J. Neuroimmunol. 24: 173 (1989).PubMedCrossRefGoogle Scholar
  7. 7.
    D. Goldgaber, H.W. Harris, T. Hla, R. Maciag, RJ. Donnelly, J. S. Jacobsen, M.P. Vitek and D.C. Gajdusek, Interleukin 1 regulates synthesis of amyloid ß-protein precursor mRNA in human endothelial cells, Proc. Natl. Acad. Sci. USA 86: 7606 (1989).PubMedCrossRefGoogle Scholar
  8. 8.
    R.A. Black, S. R. Kronheim and P.R. Sleath, Activation of interleukin-lß by a co-induced protease, FEBS Lett. 247: 336 (1989).CrossRefGoogle Scholar
  9. 9.
    N.A. Thomberry, H.G. Bull, J.R. Calaycay, K.T. Chapman, A.D. Howard, M.J. Kostura, et al., A novel heterodimeric cysteine protease is required for interleukin-lß processing in monocytes, Nature (London) 356: 768 (1992).CrossRefGoogle Scholar
  10. 10.
    D.P. Cerretti, C. J.Kozlosky, B. Mosley, N. Nelson, K. Van Ness, T.A. Greenstreet, C.J. March, S.R. Kronheim, R. Druck, L.A. Cannizzaro, K. Huebner, and R.A. Black, Molecular Cloning of the interleukin-lß converting enzyme, Science 256: 97 (1992).PubMedCrossRefGoogle Scholar
  11. 11.
    B.D. Shivers, D.A. Giegel, and K.M. Keane, Molecular cloning of rat interleukin-lß-converting enzyme: distribution and regulation, J. Cell. Biochem. Supplement 17B:119 (1993). (accepted for Cytokine) Google Scholar
  12. 12.
    M.A. Nett, D.P. Cerretti, D.R. Berson, J. Seavitt, D.J. Gilbert, N.A. Jenkins, N.G. Copeland, R.A. Black, and D.D. Chaplin, Molecular cloning of the murine IL-lß converting enzyme cDNA, J. Immunol. 10: 1 (1992).CrossRefGoogle Scholar
  13. 13.
    S.M. Molineaux, R.J. Casano, A.M. Rolando, E.P. Peterson, G. Limjuco, J. Chin et al., Interleukin lß(IL-l(3) processing in murine macrophages requires a structurally conserved homologue of human IL-lß converting enzyme, Proc. Natl. Acad. Sci. USA 90: 1809 (1993).PubMedCrossRefGoogle Scholar
  14. 14.
    K.B. Mullis, F. Fallona, S.J. Scharf, R.K. Saiki, G. T. Horn and H.A. Erlich, Specific enzymatic amplification of DNA in vitro: The polymerase chain reaction, Cold Spring Harbor. Quant. Biol. 51: 263 (1986).CrossRefGoogle Scholar
  15. 15.
    F. Sanger, S. Nicklen, and A.R. Coulson, DNA sequencing with chain-terminating inhibitors, PrOc. Natl. Acad. Sci. USA 74: 5463 (1977).PubMedCrossRefGoogle Scholar
  16. 16.
    J.J. Chirgwin, A.E. Przbyla, R. J. MacDonald, and W.J. Rutter, Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease, Biochem. 18: 5294 (1979).CrossRefGoogle Scholar
  17. 17.
    P.D. Walker and L.R. Carlock, Immediate-early gene activation during the intial phases of the excitotoxic cascade, J. Neurosci. Res. 36: 588 (1993).PubMedCrossRefGoogle Scholar
  18. 18.
    Preparation and analysis of RNA in: “Current Protocols in Molecular Biology, F.M. Ausubel, R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith and K. Stuhl, eds., Greene and Wiley Interscience, Brooklyn, NY, 1993.Google Scholar
  19. 19.
    D.N. Posnett and J.P. Tam, Multiple antigenic peptide method for producing antipeptide site-specific antibodies, Meth. Enzymol. 178: 739 (1989).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Brenda D. Shivers
    • 1
  • David A. Giegel
    • 1
  • William J. Lipinski
    • 1
  • Michael J. Callahan
    • 1
  • James M. Saunders
    • 1
  • Leon R. Carlock
    • 2
  • Paul D. Walker
    • 3
  • Karen M. Keane
    • 1
  1. 1.Departments of Neuroscience Pharmacology, Biochemistry and Infectious Diseases Parke-Davis Pharmaceutical Research DivisionWarner-Lambert Co.Ann ArborUSA
  2. 2.Center for Molecular Medicine and GeneticsWayne State UniversityDetroitUSA
  3. 3.Department of Anatomy and Cell BiologyWayne State UniversityDetroitUSA

Personalised recommendations