Tau and High Molecular Weight Microtubule Associated Proteins in Aluminum-Induced Neurofibrillary Pathology

  • Geraldine A. New
  • Nancy A. Muma
Part of the Advances in Behavioral Biology book series (ABBI, volume 44)


Alterations in the neuronal cytoskeleton characterize a number of human neurological disorders, including Alzheimer’s and Parkinson’s Diseases (AD and PD) (Iqbal et al., 1987). The hypothesis that environmental aluminum neurotoxicity causes Alzheimer’s disease in humans has been the subject of considerable debate (Graves et al., 1990; Crapper-McLachlan et al., 1991; Guy et al., 1991; McDermott et al., 1979; Bonhaus et al., 1980; Kruck 1993). Aluminum can readily cross the blood brain barrier (Wen and Wisniewski, 1985), is found in neurofibrillary tangle (NFT)-containing neurons (Perl & Brody, 1980), and forms the core of the senile plaque (Candy et al., 1986; Crapper et al., 1973). Aluminum is prevalent in the drinking water (Martyn et al., 1989), food preservatives (French et al., 1989) and, in fact, it is the third most prevalent element on the earth’s surface (Graves et al., 1990; King et al., 1981). High levels of aluminum in humans in dialysis dementia have been associated with degeneration of cortical cells, however, neurofibrillary changes were not present (Alfrey et al., 1976). Although the neural concentration of aluminum increases with age, there have been conflicting results concerning the correlation between aluminum deposits and NFT (McDermott et al., 1979; Perl & Brody 1980; Wen and Wisniewski, 1985). There is no correlation between the amount of aluminum in NFT in AD or demented patients as compared to age matched controls (Wen and Wisniewski, 1985).


Neurofibrillary Tangle Neuronal Cell Body Paired Helical Filament Neurofibrillary Degeneration Neurofibrillary Pathology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alfrey, A.C., LeGendre, G.R., and Kaehny, W.D., 1976, The dialysis encephalopathy syndrome. Possible aluminum intoxication, N. Engl. J. Med. 294: 184–188.PubMedCrossRefGoogle Scholar
  2. Anderton, B.H., Breinburg, D., Downes, M.J., Green, P.J., Tomlinson, B.E., Ulrich, J., Wood, J.N., and Kahn, J., 1982, Monoclonal antibodies show that neurofibrillary tangles and neurofilaments share antigenic determinants, Nature 298: 84–86.PubMedCrossRefGoogle Scholar
  3. Ara, H., Lee, V.M.-Y., Otvos, L., Greenberg, B.D., Lowery, D.E., Sharma, S.K., Schmidt, M.L., Trojanowski, J.Q., 1990, Defined neurofilament, and ß-amyloid precursor protein epitopes distinguish Alzheimer from non-Alzheimer senile plaques, Proc. Natl. Acad. Sci. U.S.A. 87: 2249–2253.CrossRefGoogle Scholar
  4. Bertholf, R.L., Herman, M.M., Savory, J., Carpenter, R.M., Sturgill, B.C., Katsetos, C.D., VandenBerg, S.R., and Wills, M.R., 1989, A long-term intravenous model of aluminum maltol toxicity in rabbits: tissue distribution, hepatic, renal, and neuronal cytoskeletal changes associated with systemic exposure, Toxicol. Appl. Pharmacol. 98: 58–74.PubMedCrossRefGoogle Scholar
  5. Binder, L.I., Frankfurter, A, Caceres, K.H., Payne, M.R., and Rebhun, L.I.,1984, Heterogeneity of microtubule-associated protein 2 during rat brain development, Proc. Natl. Acad. Sci. U.S.A. 81: 5613–5617.Google Scholar
  6. Bizzi, A., and Gambetti, P., 1986, Phosphorylation of neurofilaments is altered in aluminum intoxication, Acta. Neuropathol. 71: 154–158.PubMedCrossRefGoogle Scholar
  7. Bizzi, A., Crane, C., Autilio-Gambetti, L., and Gambetti, P., 1984, Aluminum effect on slow axonal transport: a novel impairment of neurofilament transport, J. Neurosci. 4 (3): 722–731.PubMedGoogle Scholar
  8. Bloom, G.S., and Vallee, R.B., 1983, Associated of microtubule-associated protein 2 (MAP2) with microtubules and intermediate filaments in cultured brain cells, J. Cell Biol. 96: 1523–1531.PubMedCrossRefGoogle Scholar
  9. Bonhaus, D.W., McCormack, K.M., Mayor, G.H., Mattson, J.C., and Hook, J.B., 1980, The effects of aluminum on microtubular integrity using in vitro and in vivo models, Toxicol. Leu. 6: 141–147.CrossRefGoogle Scholar
  10. Candy, J.M., Oakley, A.E., and Klinowski, J., 1986, Aluminosilicates and senile plaque formation in Alzheimer’s disease, Lancet i:354–357.Google Scholar
  11. Caputo, C.B., Wischik, C., Novak, M., Scott, C.W., Brunner, W.F., Montejo de Garcini, E., Lo, M.M.S., Norris, T.E., and Salama, A.I., 1992, Immunological characterization of the region of tau protein that is bound to Alzheimer paired helical filaments, Neurobiol. Aging 13: 267–274.PubMedCrossRefGoogle Scholar
  12. Cleveland, D.W., Hwo, S-Y, and Kirschner, M.W., 1977, Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin, J. Mol. Biol. 116: 207–225.PubMedCrossRefGoogle Scholar
  13. Crapper, D.R., Krishana, S.S., and Dalton, A.J., 1973, Brain aluminum distribution in Alzheimer’s disease and experimental neurofibrillary degeneration, Science 180: 511–513.PubMedCrossRefGoogle Scholar
  14. Crapper-McLachlan, D.R., Dalton, A.J., Kruck, T.P.A., Bell, M.Y., Smith, W.L., Kalow, W., and Andrews, D.F., 1991, Intramuscular desferrioxamine in patients with Alzheimer’s disease. Lancet 337: 1304–1308.PubMedCrossRefGoogle Scholar
  15. Diaz-Nido, J., and Avila, J., 1990, Aluminum induces the in vitro aggregation of bovine brain cytoskeletal proteins, Neurosci. Lett. 110: 221–226.PubMedCrossRefGoogle Scholar
  16. Flament, S., and Delacourte, A., 1989, Abnormal tau species are produced during Alzheimer’s disease, neurodegenerating process, Febs. Lett. 247 (2): 213–216.PubMedCrossRefGoogle Scholar
  17. French, P., Gardner, M.J., and Gunn, A.M., 1989, Dietary aluminum and Alzheimer’s disease, Fd. Chem. Toxic. 27 (7): 495–498.CrossRefGoogle Scholar
  18. Goedert, M., Crowther, R.A., and Garner, C.C., 1991, Molecular characterization of microtubule-associated proteins tau and MAP2, TINS 14 (5): 193–199.PubMedGoogle Scholar
  19. Graves, A.B., White, E., Koepsell, T.D., Reifler, B.V., Van Belle, G., and Larson, E.B.,1990, The association between aluminum-containing products and Alzheimer’s disease. J. Clin. Epidemiol. 43 (1):35–44.Google Scholar
  20. Guy, S.P., Jones, D., Mann, D.M.A, and Itzhaki, R.F., 1991, Human neuroblastoma cells treated with aluminum express an epitope associated with Alzheimer’s disease neurofibrillary tangles. Neurosci. Lett. 121: 166–168.PubMedCrossRefGoogle Scholar
  21. Heimann, R., Shelanski, M.L., Liem, R,K., 1985, Microtubule-associated proteins bind specifically to the 70-kDa neurofilament protein, J. Biol. Chem. 260 (22): 12160–12166.PubMedGoogle Scholar
  22. Hirokawa, N., Hisanaga, S., Shiomura, Y., 1988, MAP2 is a component of crossbridges between microtubules and neurofilaments in the neuronal cytoskeleton: quick-freeze, deep-etch immunoelectron microscopy and reconstitution studies, J. Neurosci. 8 (8): 2769–2779.PubMedGoogle Scholar
  23. Iqbal, K., Grundke-Iqbal, I., Merz, P.A., Wisniewski, H.M., and Zaidi, T., 1987, In vitro assembly and isolation of neurofilaments and microtubules from mammalian CNS. Brain Res. 388 (2): 163–172.Google Scholar
  24. Joachim, C.L., James, Morris, J.H., Selkoe, D.J., and Kosik, K.S., 1987, Tau epitopes are incorporated into a range of lesions in Alzheimer’s disease, J. Neuropathol. Exp. Neurol. 46 (6): 611–622.Google Scholar
  25. Johnson, G.V.W., and Jope, R.S., 1988, Phosphorylation of rat brain cytoskeletal proteins is increased after orally administered aluminum, Brain Res. 456: 95–103.PubMedCrossRefGoogle Scholar
  26. Kedd M., 1963, Paired helical filaments in electron microscopy of Alzheimer’s disease. Nature 197: 192–193.CrossRefGoogle Scholar
  27. King, S.W., Savory, J., and Wills, M.R., 1981, The clinical biochemistry of aluminum, Crit. Rev. Clin. Lab. Sci. 13: 1–20.CrossRefGoogle Scholar
  28. Klatzo, I., Wisniewski, H., and Streicher, E., 1965, Experimental production of neurofibrillary degeneration. I. Light microscopic observations, J. Neuropathol. Exp. Neurol. 24:187–199..Google Scholar
  29. Kondo, J., Honda, T., Mori, H., Hamada, Y., Miura, R., Ogawara, M., and Ihara, Y., 1988, The carboxyl third of tau is tightly bound to paired helical filaments, Neuron 1: 827–834.PubMedCrossRefGoogle Scholar
  30. Kosik, K.S., Duffy, L.K., Dowling, M.M., McCluskey, A.C., and Selkoe, D.J., 1984, Microtubuleassociated protein 2: monoclonal antibodies demonstrate the selective incorporated of certain epitopes into Alzheimer neurofibrillary tangles, Proc. Natl. Acad. Sci. U.S.A. 81: 7941–7945.PubMedCrossRefGoogle Scholar
  31. Kosik, K.S., Orecchio, L.D., Binder, L.I., Trojanowski, J.Q., Lee, V.M-Y, and Lee, G., 1988, Epitopes that span the tau molecule are shared with paired helical filaments, Neuron. 1: 817–825.PubMedCrossRefGoogle Scholar
  32. Kowa11, N.W., and Kosik, K.S., 1987, Axonal disruption and aberrant localization of tau protein characterize the neuropil pathology of Alzheimer’s disease, Ann. Neurol. 22: 639–643.PubMedCrossRefGoogle Scholar
  33. Kowall, N.W., Pendlebury, W.W., Kessler, J.B., Perl, D.P., and Beal, M.F., 1989, Aluminum-induced neurofibrillary degeneration affects a subset of neurons in rabbit cerebral cortex, basal forebrain and upper brainstem, Neurosci. 29 (2): 329–337.CrossRefGoogle Scholar
  34. Kruck, T.P.A., 1993, Aluminum - Alzheimer’s link? Nature 363: 119.PubMedCrossRefGoogle Scholar
  35. Ksiezak-Reding, H., Davies, P., and Yen, S-H., 1988, Alz 50, a monoclonal antibody to Alzheimer’s disease antigen, cross-reacts with r proteins from bovine and normal human brain, J. Biol. Chem. 263 (17): 7943–7947.PubMedGoogle Scholar
  36. Ksiezak-Reding, H., Chien, C-H, Lee, V.M-Y, and Yen, S-H., 1990a, Mapping of the Alz 50 epitope in microtubule-associated proteins tau, J. Neurosci. Res. 25: 412–419.PubMedCrossRefGoogle Scholar
  37. Ksiezak-Reding, H., Binder, L.I., and Yen, S-H., 1990b, Alzheimer disease proteins (A68) share epitopes with tau but show distinct biochemical properties, J. Neurosci. Res. 25: 420–430.PubMedCrossRefGoogle Scholar
  38. Lee, V.M-Y, Baain, B.J., and Otvos, L., 1991, A68: a major subunit of paired helical filaments and derivatized forms of normal tau, Science 251: 675–678.PubMedCrossRefGoogle Scholar
  39. Martyn, C.N., Osmond, C., Edwardson, J.A., Barker, D.J.P., Harris, E.C., and Lacey, R.F., 1989, Geographical relation between Alzheimer’s disease and aluminum in drinking water, Lancet, 14 January:59–62.Google Scholar
  40. McDermott, J.R., Smith, A.I., Iqbal, K., and Wisniewski, H.M., 1979, Brain aluminum in aging and Alzheimer disease, Neurology 29: 809–814.PubMedCrossRefGoogle Scholar
  41. Mori, H., Kondo, J., and Ihara, Y., 1987, Ubiquitin is a component of paired helical filaments in Alzheimer’s disease, Science 235 (4796): 1641–1644.PubMedCrossRefGoogle Scholar
  42. Mums, N.A., Troncoso, J.C., Hoffman, P.N., Koo, E.H., and Price, D.L., 1988, Aluminum neurotoxicity: altered expression of cytoskeletal genes, Mol. Brain Res. 3: 115–122.CrossRefGoogle Scholar
  43. Munoz-GGarcia, D., Pendlebury, W.W., Kessler, J.B., and Perl, D.P., 1986, An immunocytochemical comparison of cytoskeletal proteins in aluminum-induced and Alzheimer-type neurofibrillary tangles, Acta. Neuropathol. 70: 243–248.CrossRefGoogle Scholar
  44. Nukina, N., and Ihara, Y., 1986, One of the antigenic determinants of paired helical filaments is related to tau protein, J. Biochem. 99: 1541–1544.PubMedGoogle Scholar
  45. Nukina, N., Kosik, K.S., and Selkoe, D.J., 1988, The monoclonal antibody, A1z50, recognizes tau proteins in Alzheimer’s disaace brain, Neurosci. Lett. 87: 240–246.PubMedCrossRefGoogle Scholar
  46. Nunez, J., 1988, Immature and mature variants of MAP2 and tau proteins and neuronal plasticity, TINS 11: 477–479.PubMedGoogle Scholar
  47. Olmsted, J.B., 1986, Microtubule-associated proteins: their potential role in determining neuronal morphology, Ann. Rev. Neurosci. 11: 29–44.Google Scholar
  48. Papasozomenos, S.C., Binder, L.I., Bender, P.K., Payne, M.R., 1985, Microtubule-associated protein 2 within axons of spinal motor neurons: associations with microtubules and neurofilaments in normal and beta, beta’-iminodipropionitrile-treated axons, J. Cell. Biol. 100 (1): 74–85.PubMedCrossRefGoogle Scholar
  49. Parhad, I.M., Krekowski, C.A., Mathew, A., and Tran, P.M., 1989, Neuronal gene expression in aluminum myelopathy, Cell. Mol. Neurobiol. 9: 123.PubMedCrossRefGoogle Scholar
  50. Perl, D.P., and Brody, A.R., 1980, Alzheimer’s disease: X-ray spectrometric evidence of aluminum accumulation in neurofibrillary tangle-bearing neurons, Science 208: 297–299.PubMedCrossRefGoogle Scholar
  51. Perry, G., Rizzuto, N., Autilio-Gambetti, L., and Gambetti, P., 1985, Paired helical filaments from Alzheimer disease patients contain cytoskeletal components, Proc. Natl. Acad. Sci. U.S.A. 82 (11): 3916–3920.PubMedCrossRefGoogle Scholar
  52. Perry, G., Friedman, R., Kang, D.H., Manetto, V., Autilio-Gambetti, L., and Gambetti, P., 1987, Antibodies to the neuronal cytoskeleton are elicited by Alzheimer paired helical filament fractions, Brain Res. 420 (2): 233–242.PubMedCrossRefGoogle Scholar
  53. Schmidt, M.L., Lee V.M-Y, and Trojanowski, J.Q., 1990, Relative abundance of tau and neurofilament epitopes in hippocampal neurofibrillary tangles, Am. J. Pathol. 136 (5): 1069–1075.PubMedGoogle Scholar
  54. Scott, C.W., Klika, A.B., Lo, M.M.S., Norris, T.E., and Caputo, C.B., 1992, Tau protein induces bundling of microtubules in vitro: comparison of different tau isoforms and a tau protein fragment, J. Neurosci. Res. 33: 19–29.PubMedCrossRefGoogle Scholar
  55. Shigematsu, K., and McGeer, P.L., 1992, Accumulation of amyloid precursor protein in damaged neuronal processes and microglia following intracerebral administration of aluminum salts, Brain Res. 593: 117123.Google Scholar
  56. Stemberger, L.A., and Sternberger, N.H., 1983, Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. Proc. Nail. Acad. Sci. U.S.A. 80: 6126–6130.CrossRefGoogle Scholar
  57. Strong, M.J., Wolff, A.V., Wakayama, I., and Garruto, R.M., 1991, Aluminum-induced chronic myelopathy in rabbits, Neurotoxicology 12: 9–22.PubMedGoogle Scholar
  58. Takeda, M., Tatebayashi, Y., Tanimukai, S., Nakamura, Y., Tanaka, T., Nishimura, T., 1991, Immunohistochemical study of microtubule-associated protein 2 and ubiquitin in chronically aluminum-intoxicated rabbit brain, Acta Neuropathol. 82: 346–352.PubMedCrossRefGoogle Scholar
  59. Terry, R.D., and Pena., 1965, Experimental production of neurofibrillary degeneration. 2. Electron microscopy, phosphatase histochemistry and electron probe analysis. J. Neuropathol, Exp. Neurol. 24: 200–210.CrossRefGoogle Scholar
  60. Trojanowski, J.Q., Schuck, T., Schmidt, M.L., Lee, V.M-Y., 1989, Distribution of tau proteins in the normal human central and peripheral nervous system, J. Histochem. Cytochem. 37: 209–215.PubMedCrossRefGoogle Scholar
  61. Troncoso, J.C., Hoffman, P.N., Griffin, J.W., Hess-Kozlow, K.M., and Price, D.L., 1985, Aluminum intoxication: a disorder of neurofilament transport in motor neurons. Brain Res. 342: 172–175.PubMedCrossRefGoogle Scholar
  62. Troncoso, J.C., Sternberger, N.H., Sternberger, L.A., Hoffman, P.N., Price, D.L., 1986, Immunocytochemical studies of neurofilament antigens in the neurofibrillary pathology induced by aluminum, Brain Res. 364: 295–300.PubMedCrossRefGoogle Scholar
  63. Tucker, R.P., 1990, The role of microtubule-associated proteins on brain morphogenesis. Brain Res. Rev. 15: 101–120.PubMedCrossRefGoogle Scholar
  64. Wakayama, I., Nerurka, V.R., Garruto, R.M., 1993, Immunocytochemical and ultrastructural evidence of dendritic degeneration in motor neurons of aluminum-intoxicated rabbits. Acta. Neuropathol. 85: 122–128.PubMedCrossRefGoogle Scholar
  65. Weingarten, M.D., Lockwood, A.H., Hwo, S-Y, Kirschner, M.W., 1975, A protein factor essential for microtubule assembly, Proc. Natl. Acad. Sci. U.S.A. 72 (5): 1858–1862.PubMedCrossRefGoogle Scholar
  66. Wen, G.Y. and Wisniewski, H.M., 1985, Histochemical localization of aluminum in the rabbit CNS. Acta. Neuropathol. 68: 175–184.PubMedCrossRefGoogle Scholar
  67. Wischik, C.M., Novak, M., Thogersen, H.C., Edwards, P.C., Runswick, M.J., Jakes, R., Walker, J.E., Milstein, C., Roth, M., and Klug, A., 1988, Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer disease, Proc. Natl. Acad. Sci. U.S.A. 85: 4506–4510.PubMedCrossRefGoogle Scholar
  68. Wisniewski, H., Narang, H.K., and Terry, R.D., 1976, Neurofibrillary tangles of paired helical filaments, J. Neuro. Sci. 27: 173–181.CrossRefGoogle Scholar
  69. Wisniewski, H.M., Sturman, J.A., and Shek, J.W., 1979, Aluminum chloride-induced neurofibrillary changes in the developing rabbit: A chronic animal model, Ann. Neurol. 8: 479–490.CrossRefGoogle Scholar
  70. Wisniewski, H., Karczewski, W., Wisniewski, A., 1966, Neurofibrillary degeneration of nerve cells after intracerebral injection of aluminum cream, Acta. Neuropathol. 6: 211–219.PubMedCrossRefGoogle Scholar
  71. Wood, J.G., Mirra, S.S., Pollock, N.J., and Binder, L.I., 1986, Neurofibrillary tangles of Alzheimer disease share antigenic determinants with the axonal microtubule-associated protein tau, Proc. Natl. Acad. Sci. U.S.A. 83: 4040–4043.PubMedCrossRefGoogle Scholar
  72. Yates, C.M., Gordon, A., and Wilson, H., 1976, Neurofibrillary degeneration induced in the rabbit by aluminum chloride: aluminum neurofibrillary tangles, Neuropathol. Appl. Neurobiol. 2: 131–144.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Geraldine A. New
    • 1
  • Nancy A. Muma
    • 1
  1. 1.Department of PharmacologyLoyola University Chicago Stritch School of MedicineMaywoodUSA

Personalised recommendations