Advertisement

Visual Processing in Alzheimer’s Disease

  • Gastone G. Celesia
  • Alessandro E. P. Villa
  • Mitchell Brigell
  • John M. Lee
  • Einar Sigurdsson
Part of the Advances in Behavioral Biology book series (ABBI, volume 44)

Abstract

Four percent of 88 Alzheimer’s patients seen in 1992–93 at the Memory Disorders and Alzheimer’s Disease Center at Loyola University of Chicago had as the presenting symptom difficulty in processing visual information. Complex visual disturbances have been described in Alzheimer’s disease (AD), including constructional and visuoperceptual disorientation, spatial agnosia, facial identification problems, Balint’s syndrome, and impairment of contrast sensitivity functions (Adelstein et al. 1992, Mendez et al. 1992, Rizzo et al. 1992, Hof and Bouras 1991, Cronin-Golomb et al. 1991, Mendez et al. 1990 a,b, Flicker et al. 1990). This widespread visual dysfunction may reflect known pathological changes in the primary visual pathways or in the association cortex, or both. Pathological changes have been described in the optic nerve (Hinton et al. 1986, Sadun 1989), the primary and the association visual cortices (Lewis et al. 1987, Armstrong et al. 1990, Bell and Ball 1990, Levine et al. 1992). Trick et al (1989) and Katz et al (1989) have reported changes in the pattern electroretinograms suggesting that there is a quantifiable retinal ganglion cell dysfunction in Alzheimer’s disease. However, Katz et al. (1989) also found that pattern VEPs and flash VEPs had normal P100 responses but had a delayed second positive component suggesting a dysfunction of visual association cortex. In a prospective study (Mendez et al., 1990) found that all 30 patients studied had some disturbances in figure analysis, and 57% of these patients had some form of visual agnosia. These authors concluded that complex visual disturbances are more frequent than previously realized.

Keywords

Primary Visual Cortex Brodmann Area ChAT Activity Contrast Sensitivity Function Visual Agnosia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adelstein, T.B., Kesner, R.P., and Strassberg, D.S., 1992, Spatial recognition and spatial order memory in patients with dementia of the Alzheimer’s type, Neuropsychologia. 30: 59–67.PubMedCrossRefGoogle Scholar
  2. Andrews, J.S., Grútzner, M., and Stephens, D.N., 1992, Effects of cholinergic and non-cholinergic drugs on visual discrimination and delayed visual discrimination performance in rats, Psychopharmacology (Berl) 106: 523–530.CrossRefGoogle Scholar
  3. Aoki, C., and Kabak, S., 1992, Cholinergic terminals in the cat visual cortex: Ultrastructural basis for interaction with glutamate-immunoreactive neurons and other cells, Visual Neurosci. 8: 177–191.CrossRefGoogle Scholar
  4. Arakawa, K., Peachey, N.S., Celesia, G.G., and Rubboli, G., 1993, Component-specific effects of physostigmine on the cat visual evoked potential, Exp. Brain Res. 95: 271–276.PubMedCrossRefGoogle Scholar
  5. Armstrong, R.A., Nocklin, D., Sumi, S.M., and Alvord Jr, E.C., 1990, Neuropathological changes in the visual cortex in Alzheimer’s disease, Neurosci. Res. Commun. 6: 163–171.Google Scholar
  6. Bell, M.A., and Ball, M.J., 1990, Neuritic plaques and vessels of visual cortex in aging and Alzheimer’s dementia, Neurobiol. Aging 11: 358–370.CrossRefGoogle Scholar
  7. Benignus, V.A., 1969, Estimation of the coherence spectrum and its confidence interval using the Fast Fourier Transform, IEEE Trans. AU 17: 145–150.Google Scholar
  8. Beatty, W.W., and Salmon, D.P., 1991, Remote memory for visuospatial information in patients with Alzheimer’s disease. J. Geriat. Psychiat. Neur. 4: 14–17.CrossRefGoogle Scholar
  9. Brandeis, D., Naylor, H., Halliday, R., Callaway, E., and Yano, L., 1992, Scopolamine effects on visual information processing, attention, and event-related potential map latencies, Psychophysiology, 29: 315–336.PubMedCrossRefGoogle Scholar
  10. Bullock, T.H., and McClune, M.C., 1989, Lateral coherence of the electrocorticogram: a new measure of brain synchrony. Electroencephalogr. Clin. Neurophysiol. 73: 479–498.PubMedCrossRefGoogle Scholar
  11. Celesia, G.G., and Daley, R.F., 1977, Effects of aging on visual evoked responses, Arch. Neurol. 34: 403–407.PubMedCrossRefGoogle Scholar
  12. Celesia, G.G., Villa, A.E.P., Brigell, M., Rubboli, G., Bolcioni, G., and Fiori, M., 1993, An electrophysiological study of visual processing in Alzheimer’s disease. Electroencephalogr. Clin. Neurophysiol, 87: 97–104.PubMedCrossRefGoogle Scholar
  13. Cooley, J.W., and Tukey, J.W., 1965, An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19: 297–301.CrossRefGoogle Scholar
  14. Coyle, J.T., Price, D.L., and DeLong, M.R., 1983, Alzheimer’s disease: a disorder of cortical cholinergic innervation, Science 219: 1184–1190.PubMedCrossRefGoogle Scholar
  15. Cronin-Golomb, A., Corkin, S., Rizzo, J.F., Cohen, J., Growdon, J.H., and Banks, K.S.,1991, Visual dysfunction in Alzheimer’s disease: relation to normal aging, Ann. Neurol. 29: 41–52.Google Scholar
  16. Duckrow, R.B., and Spencer, S.S., 1992, Regional coherence and the transfer of ictal activity during seizure onset in the medial temporal lobe. Electroencephalogr. Clin. Neurophysiol. 82: 415–422.PubMedCrossRefGoogle Scholar
  17. Eisenhart, C., Hastay, M.W., and Wallis, W.A., 1947, Techniques of Statistical Analysis, McGraw-Hill, New York, New York.Google Scholar
  18. Faden, M.A.J., and Townsend, J.J., 1976, Myoclonus in Alzheimer’s disease–a confusing sign. Arch. Neurol. 33: 278–280.PubMedCrossRefGoogle Scholar
  19. Flicker, C., Ferris, S.H., Crook, T. and Bartus, R.T., 1990, Impaired facial recognition memory in aging and dementia. Alzheimer Dis. Assoc. Disord. 4: 43–54.PubMedCrossRefGoogle Scholar
  20. Flynn, D.D., Weinstein, D.A., and Mash, D.C., 1991, Loss of high-affinity agonist binding to M1 muscarinic receptors in Alzheimer’s disease: implications for the failure of cholinergic replacement therapies, Ann. Neurol. 29: 256–262.PubMedCrossRefGoogle Scholar
  21. Folstein, M., Folstein, N., and McHugh, P.R., 1975, Mini-mental state: a practical method for grading the cognitive state of patients for the clinician, J. Psychiat. Res. 12: 189–198.PubMedCrossRefGoogle Scholar
  22. Fonnum, F.,1975, A rapid radiochemical method for the determination of choline acetyltransferase. J. Neuro Chem. 24: 407–409.Google Scholar
  23. Glass, A., Zappulla, R.A., Nieves, J., and Diamond, S.P., 1992, EEG coherence as a predictor of spike propagation, Electroencephalogr. Clin. Neurophysiol. 82: 10–16.PubMedCrossRefGoogle Scholar
  24. Harding, G.F.A., Wiley, R.W., and Kirby, A.W., 1983, A cholinergic-sensitive channel in the cat visual system tuned to low spatial frequencies, Science 221: 1076–1078.PubMedCrossRefGoogle Scholar
  25. Hinton, D.R., Sadun, A.A., Blanks, J.C., and Miller, C.A., 1986, Ophthalmic nerve degeneration in Alzheimer’s disease, N. Engl. J. Med. 315: 485–487.PubMedCrossRefGoogle Scholar
  26. Hjorth, B., 1980, Source derivation simplifies topographical EEG interpretation, Am. J. EEG Technol. 20: 121–132.Google Scholar
  27. Hof, P.R., and Bouras, C., 1991, Object recognition in Alzheimer’s disease: possible disconnection of the occipito-temporal component of the visual system, Neurosci. Lett. 122: 53–56.PubMedCrossRefGoogle Scholar
  28. Hof, P.R., Bouras, C., Constantinidis, J., and Morrison, J.H., 1990, Balint’s syndrome in Alzheimer’s disease: specific disruption of the occipito-parietal visual pathway, J. Neuropathol. Exp. Neurol. 49: 168–184.PubMedCrossRefGoogle Scholar
  29. Katz, B., Rimmer, S., Iragui, V., and Katzman, R., 1989, Abnormal pattern electroretinogram in Alzheimer’s disease: evidence for retinal ganglion cell degeneration? Ann. Neurol. 26: 221–225.PubMedCrossRefGoogle Scholar
  30. La Marche, J.A., Dobson, W.R., Cohn, N.B., and Dustman, R.E., 1986, Amplitudes of visually evoked potentials to patterned stimuli. Age and sex comparisons. Electroencephalogr. Clin. Neurophysiol. 65: 81–85.PubMedCrossRefGoogle Scholar
  31. Levine, D.N., Lee, J.M., and Fisher, C.M., 1992, The visual variant of Alzheimer’s disease: a clinicopathologic case study, Neurology 43 (2): 305–313.CrossRefGoogle Scholar
  32. Lewis, D.A., Campbell, M.J., Terry, R.D. and Morrison, J.H., 1987, Laminar and regional distribution of neurofibrillary tangles and neuritic plaques in Alzheimer’s disease: a quantitative study of visual and auditory cortices, J. Neurosci. 7: 1799–1808.PubMedGoogle Scholar
  33. Liu, L., Gauthier, L. and Gauthier, S., 1991, Spatial disorientation in persons with early senile dementia of the Alzheimer’s type, Am. J. Occup. Ther. 45: 67–74.PubMedCrossRefGoogle Scholar
  34. Madden, T., 1964, Spectral, cross spectral, and bispectral analysis of low frequency electromagnetic data. in: “Natural electromagnetic phenomena below 30 Kc/S”, D.F. Bleil, ed., Plenum, New York/New York, 429–450.Google Scholar
  35. McKahn, G., Drachman, D., Folstein, M., Katzman, R., Price, D. and Stadlan, E., 1984, Clinical diagnosis of AD. Report of the NINCDS-ADRDA work group under the auspices of DHHS task force on AD, Neurology 34: 939–944.CrossRefGoogle Scholar
  36. Mendez, M.F., Martin, R.J., Smyth, K.A., and Whitehouse, P.J., 1992, Disturbances of person identification in Alzheimer’s disease. A retrospective study, J. Nerv. Mental Dis. 180: 94–6.CrossRefGoogle Scholar
  37. Mendez, M.F., Mendez, M.A., Martin, R., Smyth, K.A., and Whitehouse, P.J., 1990a, Complex visual disturbances in Alzheimer’s disease, Neurology 40: 439–43.PubMedCrossRefGoogle Scholar
  38. Mendez, M.F., Tomsak, R.L. and Remler, B., 1990b, Disorders of the visual system in Alzheimer’s disease, J. Clin. Neuro-Ophthalmol. 10: 62–9.Google Scholar
  39. Mirra, S.S., Heyman, A., McKeel, D., Sumi,S.M., Crain, B.J., Brownlee, L.M., Vogel, F.S., Hughes, J.P., van Belle, G., and Berg, L., 1991, The consortium to establish a registry for Alzheimer’s disease (CERAD). Part II. Standardization of the neuropathological assessment of Alzheimer’s disease. Neurology 41: 479–486.PubMedCrossRefGoogle Scholar
  40. Muir, J.L., Dunnett, S.B., Robbins, T.W., and Everitt, B.J., 1992, Attentional functions of the forebrain cholinergic systems: effects of intraventricular hemicholinium, physostigmine, basal forebrain lesions and intracortical grafts on a multiple-choice serial reaction time task, Exp. Brain Res. 89: 611–622.PubMedCrossRefGoogle Scholar
  41. Munson, P.J., and Rodbard, D., 1980, Ligand: a versatile computerized approach for characterization of ligand-binding systems, Anal. Biochem. 107: 220–229.PubMedCrossRefGoogle Scholar
  42. Nissen, M.J., Corkin, S., Buonanno, F.S., Growdon, J.H., Wray, S.H., and Bauer, J., 1985, Spatial vision in Alzheimer’s disease–general findings and a case report, Arch. Neurol. 42: 667–671.PubMedCrossRefGoogle Scholar
  43. Orr, W.C., and Naitoh, P., 1976, The coherence spectrum: an extension of correlation analysis with applications to chronobiology, Int. J. Chronobiol. 3: 171–192.Google Scholar
  44. Orwin, A., Wright, C.E., Harding, G.F.A., Rowan, D.C., and Rolfe, E.B., 1986, Serial visual evoked potentials recordings in Alzheimer’s disease, Br. Med. J. 293: 9–10.CrossRefGoogle Scholar
  45. Parkinson, D., Kratz, K.E., and Daw, N.W., 1988, Evidence for a nicotinic component to the actions of acetylcholine in cat visual cortex, Exp. Brain Res. 73: 553–568.PubMedCrossRefGoogle Scholar
  46. Pentillä, M., Partanen, J.V., Soininen, H., and Riekkinen, P.J., 1985, Quantitative analysis of the occipital EEG in different stages of AD. Electroencephalogr. Clin. Neurophysiol. 60:1–6.Google Scholar
  47. Smith, A.T., and Baker-Short, C.M., Pharmacological separation of mechanisms contributing to human contrast sensitivity. Visual Neurosci.,in press.Google Scholar
  48. Philpot, M.P, Amin, D. and Levy, R., 1990, Visual evoked potentials in Alzheimer’s disease: correlation with age and severity, Electroencephalogr. Clin. Neurophysiol. 77: 323–329.PubMedCrossRefGoogle Scholar
  49. Politoff, A.L., Monson, N., Hass, P., and Stadter, R., 1992, Decreased alpha bandwidth responsiveness to photic driving in Alzheimer diseAse, Electroencephalogr. Clin. Neurophysiol. 82: 45–52.PubMedCrossRefGoogle Scholar
  50. Primavera, A., Novello, P., Finocchi, C., Canevari, E. and Corsello, L., 1990, Correlation between minimental state examination and quantitative electroencephalography in senile dementia of Alzheimer type, Neuropsychobiology 23: 74–78.PubMedCrossRefGoogle Scholar
  51. Prusky, G. and Cyander, M., 1990, The distribution of MI and M2 muscarinic acetylcholine receptor subtypes in the developing cat visual cortex, Dev. Brain Res. 56: 1–12.CrossRefGoogle Scholar
  52. Rae-Grant, A., Blume, W., Lau, C., Hachinski, V.C., Fisman, M., and Merskey, H., 1987, The electroencephalogram in Alzheimer’s type dementia, Arch. Neurol. 44: 427–432.CrossRefGoogle Scholar
  53. Rapoport, S.I., 1991, Positron emission tomography in Alzheimer’s disease in realtion to disease pathogenesis: a critical review, Cerebrovasc. Brain Metab. Rev. 3: 297–335.PubMedGoogle Scholar
  54. Rizzo, J.F. 3d., Cronin-Giolomb, A., Growdon, J.H., Corkin, S., Rosen, T.J., Sandberg, M.A., Chiappa, K.H. and Lessell, S., 1992, Retinocalcarine function in Alzheimer’s disease. A clinical and electrophysiological study. Arch. Neurol. 49: 93–101.Google Scholar
  55. Rossor, M.N., Garrett, N.J., Johnson, A.L., Mountjoy, C.Q., Roth, M., and Iversen, L.L., 1982, A postmortem study of the cholinergic and GABA systems in senile dementia, Brain 105: 313–330.PubMedCrossRefGoogle Scholar
  56. Sadun, A.A., 1989, The optic neuropathy of Alzheimer’s disease. Met. Ped. Syst. Ophthalmol. 12: 64–68.Google Scholar
  57. Saltzberg, B., Burton Jr, W.D., Burch, N.R., Fletcher, J., and Michaels, R., 1986, Electrophysiological measures of regional neural interactive coupling. Linear and non-linear dependence relationships among multiple channel electro-encephalographic recordings, Int. J. Biomed. Comput. 18: 77–87.PubMedCrossRefGoogle Scholar
  58. Sheridan, P.H., Sato, S., Foster, N., Bruno, G., Cox, C., Fedio, P. and Chase, T.N., 1988, Relation of EEG alpha background to parietal lobe function in Alzheimer’s disease as measured by positron emission tomography and psychometry, Neurology 38: 747–750.PubMedCrossRefGoogle Scholar
  59. Sillito, A.M. and Kemp, J.A., 1983, Cholinergic modulation of the functional organization of the cat visual cortex, Brain Res. 289: 143–155.PubMedCrossRefGoogle Scholar
  60. Smith, A.T. and Baker-Short, C.M. Pharmacological separation of mechanisms contributing to human contrast sensitivity. Visual Neurosci.,in press.Google Scholar
  61. Soininen, H., Partanen, J., Laulumaa, V., Pääkkönen, A., Helkala, E.-L., and Riekkinen, O.J., 1991, Serial EEG in Alzheimer’s disease: 3 year follow-up and clinical outcome. Electroencephalogr. Clin. Neurophysiol. 79: 342–348.PubMedCrossRefGoogle Scholar
  62. Thatcher, R.W., Krause, P.J. and Hrybyk, M., 1986, Cortico-cortical associations and EEG coherence: a two compartmental model, Electroencephalogr. Clin. Neurophysiol. 64: 123–143.PubMedCrossRefGoogle Scholar
  63. Tomoda, H., Celesia, G.G., Brigell, M.G. and Toleikis, S.,1991, The effects of age on steady-state pattern electroretinograms and visual evoked potentials, Doc. Ophthalmol. 77: 201–211.Google Scholar
  64. Trick, G.L., Barris, M.C. and Bickler-Bluth, M., 1989, Abnormal pattern electroretinograms in patients with senile dementia of the Alzheimer’s type, Ann. Neurol. 26: 226–231.PubMedCrossRefGoogle Scholar
  65. Tucker, D.M., Roth, D.I. and Bair, T.B., 1986, Functional connections among cortical regions: topography of EEG coherence, Electroencephalogr. Clin. Neurophysiol. 63: 242–250.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Gastone G. Celesia
    • 1
  • Alessandro E. P. Villa
    • 2
  • Mitchell Brigell
    • 1
  • John M. Lee
    • 3
  • Einar Sigurdsson
    • 4
  1. 1.Department of NeurologyLoyola University Chicago, Stritch School of Medicine and Hines VA HospitalMaywoodUSA
  2. 2.Department of PhysiologyUniversity of LausanneLausanneSwitzerland
  3. 3.Department of Pathology, Section of NeuropathologyLoyola University Chicago, Stritch School of Medicine and Hines VA HospitalMaywoodUSA
  4. 4.Department of PharmacologyLoyola University Chicago, Stritch School of Medicine and Hines VA HospitalMaywoodUSA

Personalised recommendations