Advertisement

The Importance of Land Use Classification on Mesoscale Air Quality Models: A Sensitivity Study over Madrid

  • Roberto San José
  • Juan F. Prieto
  • Carlos Franco
  • Rosa M. González
Part of the NATO • Challenges of Modern Society book series (NATS, volume 22)

Abstract

The land use classification is usually produced by hand using different detailed maps which have been produced by aerial picturing or direct processes. The use of satellite images has been incorporated widely in the recent years. We present a land use classification which has been made by using a LANDSAT-5 image (October. 1987). The ANA (San José et al., 1994) mesoscale air quality system is used to study and compare the results on ozone concentrations at surface level when the automatic land use classification by using the satellite image is used and when the handmade classification is used. We present results on four different Madrid monitoring stations for ozone for both land use classifications. Two important results can be concluded: the changes on the ozone concentrations due to different land use classifications are important and can lead to different and wrong conclusions. The satellite information when applied the automatic land use classification seems to be more precise and accurate than the handmade land use classification. A full and complete statistical study should be done in the future however computational power limitations are an important obstacle for such a experiment.

Keywords

Ozone Concentration Thematic Mapper Multispectral Image Thematic Mapper Image Computational Power Limitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Octubre, 1987. “LANDSAT THEMATIC MAPPER (TM) CCT Formats Standards”, EPO/64-567. Revisión 2.Google Scholar
  2. M. P. Castillo, Diciembre, 1993. “Análisis y Clasificación de Imágenes Multiespectrales del Satélite Landsat (Thematic Mapper)”. Trabajo Fin de Carrera.Google Scholar
  3. P. J. Curran, G. M. Foody, K. Ya. Kondratyev, V. V. Kozoderov y P. P. Fedchenko, 1990. “Remote Sensing of Soils and Vegetation in the USSR”, Ed. Taylor & Francis.Google Scholar
  4. Paul M. Mather, 1989. “Computer Processing of Remotely Sensed Images; an introduction”, Ed. John Wiley & Sons.Google Scholar
  5. R. San José, L. Rodriguez, J. Moreno, M. Palacios, M. A. Sanz, M. Delgado, 1994. “Eulerian and Photochemical Modelling over Madrid Area in a Mesoscale Context”. Ed. Computational Mechanics Publications.Google Scholar
  6. Roger A. Pielke, 1984. “Mesoscale Meteorological Modeling”, Ed. Academic Press.Google Scholar
  7. S. Ormeño, 1991. “Realce y Clasificación Automática de Imágenes de Satélite”, E.U.I.T. Topográfica (UPM).Google Scholar
  8. S. Ormeño, H. Madrona, M. Castillo, J. M. Hernández, M. Delgado & R. San José, 1994. “Methodologhy for Land-use Type Classification of Multispectral Images”. Ed. Computational Mechanics Publications. Envirosoft/94.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • Roberto San José
    • 1
  • Juan F. Prieto
    • 1
  • Carlos Franco
    • 1
  • Rosa M. González
    • 1
    • 2
  1. 1.Group of Environmental Software and Modelling. Computer Science SchoolTechnical University of MadridMadridSpain
  2. 2.Department of MeteorologyComplutense UniversityMadridSpain

Personalised recommendations