Advertisement

Modeling the Effects of Urban Vegetation on Air Pollution

  • David J. Nowak
  • Patrick J. McHale
  • Myriam Ibarra
  • Daniel Crane
  • Jack C. Stevens
  • Chris J. Luley
Part of the NATO • Challenges of Modern Society book series (NATS, volume 22)

Abstract

Urban vegetation can directly and indirectly affect local and regional air quality by altering the urban atmospheric environment. Trees affect local air temperature by transpiring water through their leaves, by blocking solar radiation (tree shade), which reduces radiation absorption and heat storage by various anthropogenic surfaces (e. g., buildings, roads), and by altering wind characteristics that affect air dispersion. During the summertime, trees predominantly reduce local air temperatures, but may increase within- and below-canopy air temperature due to reduced turbulent exchange with above-canopy air (Heisler et al., 1995). Reduced air temperature due to trees can improve air quality because the emission of many pollutants and/or precursor chemicals are temperature dependent. Decreased air temperature can also reduce ozone (O3) formation (Cardelino and Chameides, 1990).

Keywords

Deposition Velocity Urban Tree Volatile Organic Compound Emission Urban Vegetation National Climatic Data Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldocchi, D., 1988, A multi-layer model for estimating sulfur dioxide deposition to a deciduous oak forest canopy, Atmos. Environ. 22:869–884.CrossRefGoogle Scholar
  2. Baldocchi, D. D., Hicks, B. B. and Camara, P., 1987, A canopy stomatal resistance model for gaseous deposition to vegetated surfaces, Atmos. Environ. 21:91–101.CrossRefGoogle Scholar
  3. Berman, S., J.Y. Ku, and S.T. Rao, 1997, Uncertainties in estimating the mixing depth: comparing three mixing-depth models with profiler measurements, Atmos. Environ., (in press).Google Scholar
  4. Bidwell, R.G.S. and Fraser, D.E., 1972, Carbon monoxide uptake and metabolism by leaves, Can. J. Bot. 50:1435–1439.CrossRefGoogle Scholar
  5. Brasseur, G.P. and R.B. Chatfield, 1991, The fate of biogenic trace gases in the atmosphere, in: Trace Gas Emissions by Plants. Sharkey, T.D., Holland, E.A., Mooney, H.A., eds., Academic Press, New York.Google Scholar
  6. Cardelino, C.A. and W.L. Chameides. 1990, Natural hydrocarbons, urbanization, and urban ozone, J. Geophys. Res. 95(D9): 13, 971-13, 979.Google Scholar
  7. Dudhia, J., 1993, A nonhydrostatic version of the Penn State-NCAR mesoscale model: validation tests and simulation of an Atlantic cyclone and cold front, Mon. Wea. Rev. 121:1493–1513.CrossRefGoogle Scholar
  8. Dyer, A.J. and C.F. Bradley, 1982, An alternative analysis of flux gradient relationships, Boundary-Layer Meteorol. 22:3–19.CrossRefGoogle Scholar
  9. Guenther, A., P. Zimmerman and M. Wildermuth, 1994, Natural volatile organic compound emission rate estimates for U.S. woodland landscapes, Atmos. Environ. 28(6): 1197–1210.CrossRefGoogle Scholar
  10. Heisler, G.M., 1986, Energy savings with trees,. J. Arboric. 12(5): 113–125.Google Scholar
  11. Heisler, G.M., R.H. Grant, S. Grimmond, and C. Souch, 1995, Urban forests-cooling our communities? in: Inside Urban Ecosystems, Proc. 7th Nat. Urban Forest Conf., American Forests, Washington, DC.Google Scholar
  12. Killus, J.P., J.P. Meyer, D.R. Durran, G.E. Anderson, T.N. Jerskey, S.D. Reynolds, and J. Ames, 1984, Continued Research in Mesoscale Air Pollution Simulation Modeling. Volume V: Refinements in Numerical Analysis, Transport, Chemistry, and Pollutant Removal, EPA/600/3-84/095a. U.S. EPA, Research Triangle Park, NC.Google Scholar
  13. King, T.S, C.S.B. Grimmond, and D.J. Nowak, 1995, Eddy correlation determination of local-scale energy and pollutant fluxes in Chicago, in: Abstracts of the Association of American Geographers 91st Annual Meeting, Assoc. Amer. Geog., Washington, DC.Google Scholar
  14. Eovett, G.M., 1994, Atmospheric deposition of nutrients and pollutants in North America: an ecological perspective, Ecol. Appl. 4:629–650.CrossRefGoogle Scholar
  15. Maxwell, E.L., 1994, A meteorological / statistical solar radiation model, in: Proc. of the 1994 Annual Conf. Amer. Solar Energy Soc., San Jose, CA.Google Scholar
  16. Monteith, J.L. and M.H. Unsworth, 1990, Principles of Environmental Physics, Edward Arnold, New York.Google Scholar
  17. Murray, F.J., L. Marsh, and P.A. Bradford, 1994, New York State Energy Plan, Vol. II: Issue Reports, New York State Energy Office, Albany, NY.Google Scholar
  18. Nowak, D.J., 1994, Understanding the structure of urban forests, J. For. 92(10):42–46.Google Scholar
  19. Nowak, D.J., 1996, Estimating leaf area and leaf biomass of open-grown deciduous urban trees, For. Sci. 42(4):504–507.Google Scholar
  20. Panofsky, H.A. and J.A. Dutton, 1984, Atmospheric Turbulence, John Wiley, New York.Google Scholar
  21. Pederson, J.R., W.J. Massman, L. Mahrt, A. Delany, S. Oncley, G. den Hartog, H.H. Neumann, R.E. Mickle, R.H. Shaw, K.T. Paw, D.A. Grantz, J.I. MacPherson, R. Desjardins, P.H. Schuepp, R. Pearson Jr., and T.E. Arcado, 1995, California ozone deposition experiment: methods, results, and opportunities, Atmos. Environ. 29(21):3115–3132.CrossRefGoogle Scholar
  22. Pleim, J.E. and J.S. Chang, and K. Zhang, 1991, A nested grid mesoscale atmospheric chemistry model,. J. Geophys. Res. 96:3065–3084.CrossRefGoogle Scholar
  23. Rao, S.T. and T. Mount, 1994, Least-cost solutions for ozone attainment in New York State: photochemical modeling analysis, Project Final Report to Niagara Mohawk Power Corp., Syracuse, NY.Google Scholar
  24. Seinfeld, J.H., 1986, Air Pollution, John Wiley, New York.Google Scholar
  25. Smith, W.H., 1990, Air Pollution and Forests, Springer-Verlag, New York.CrossRefGoogle Scholar
  26. Taha, H., 1996, Modeling impacts of increased urban vegetation on ozone air quality in the South Coast Air Basin, Atmos. Environ. 30(20):3423–3430.CrossRefGoogle Scholar
  27. U.S. EPA, 1995, PCRAMMIT User’s Guide, U.S. Environmental Protection Agency, Research Triangle Park, NC.Google Scholar
  28. van Ulden, A.P. and Holtslag, A.A.M., 1985, Estimation of atmospheric boundary layer parameters for diffusion application, J. Clim. Appl. Meteorol 24:1196–1207.CrossRefGoogle Scholar
  29. Venkatram, A., 1980, Estimating the Monin-Obukhov length in the stable boundary layer for dispersion calculations, Boundary-Layer Met. 19:481–485.CrossRefGoogle Scholar
  30. Wesely, M. L., 1989, Parameterization for surface resistance to gaseous dry deposition in regional-scale numerical models, Atmos. Environ. 23:1293–1304.CrossRefGoogle Scholar
  31. Whittaker, R.H. and Woodwell, G.M., 1967, Surface area relations of woody plants and forest communities, Amer. J. Bot. 54:931–939.CrossRefGoogle Scholar
  32. Zannetti, P., 1990, Air Pollution Modeling, Van Nostrand Reinhold, New York.CrossRefGoogle Scholar
  33. Zeigler, I., 1973, The effect of air-polluting gases on plant metabolism, in: Environmental Quality and Safety, Volume 2, Academic Press, New York.Google Scholar
  34. Zinke, P. J., 1967, Forest interception studies in the United States, in: Forest Hydrology, Pergamon Press, Oxford.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • David J. Nowak
    • 1
  • Patrick J. McHale
    • 2
  • Myriam Ibarra
    • 1
  • Daniel Crane
    • 1
  • Jack C. Stevens
    • 1
  • Chris J. Luley
    • 3
  1. 1.Northeastern Forest Experiment StationUSDA Forest ServiceSyracuseUSA
  2. 2.College of Environmental Science and ForestryState University of New YorkSyracuseUSA
  3. 3.ACRT Inc.Cuyahoga FallsUSA

Personalised recommendations