Development and Validation of the Multilayer Model MUSE - The Impact of the Chemical Reaction Mechanism on Air Quality Predictions

  • P. Sahm
  • F. Kirchner
  • N. Moussiopoulos
Part of the NATO • Challenges of Modern Society book series (NATS, volume 22)


As a new constituent of the European Zooming Model (EZM) system, the multilayer model MUSE is designed to serve as an efficient tool for simulating transport and transformation of air pollutants in the urban scale and thereby in supporting local scale air quality management in the most cost effective way.

Comparison of simulation results achieved with MUSE with corresponding results of the validated three-dimensional photochemical dispersion model MARS reveals that the model MUSE is capable of reproducing the spatial and diurnal variation of the major photochemical air pollutants.

In order to investigate the effect of the chemical reaction mechanism on air quality predictions, three different reaction mechanisms ranging from the compact mechanism KOREM to the comprehensive mechanisms EMEP and RACM are compared. The latter mechanism is a revised version of the RADM2 mechanism, the improvement mainly focussing on the description of the RO2 chemistry and biogenic emissions.

The intercomparison reveals that despite of similar predicted ozone concentrations, the chemical mechanisms are still performing differently in many aspects. Thus, the choice of a suitable chemical reaction mechanism is mainly depending on the accuracy of the emission inventory as well as on the available computer memory and CPU time.


Ozone Concentration Biogenic Emission Entrainment Zone High Ozone Concentration Great Athens Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Batchvarova E. and Gryning S.E. (1994), An applied model for the height of the daytime mixed layer and the entrainment zone, Bound.-Layer Meterol. 71, 311–323.CrossRefGoogle Scholar
  2. Bottenheim J.W. and Strausz O.P. (1982), Modelling study of a chemically reactive power plant plume, Atmos. Environ. 16, 85–97.CrossRefGoogle Scholar
  3. Deardorff J.W. (1974), Three-dimensional numerical study of the height and mean structure of the heated planetary boundary layer, Bound.-Layer Meterol. 7, 81–106.Google Scholar
  4. Hass H., Builtjes P.J.H., Simpson D., Stern R., Jakobs H.J., Memmesheimer M., Piekorz G., Roemer M., Esser P. and Reimer E. (1996), Comparison of Photo-oxidant Dispersion Model Results, EUROTRAC Special Report, ISS Garmisch-Partenkirchen.Google Scholar
  5. Kessler Chr. (1995), Entwicklung eines effizienten Lösungsverfahrens zur Beschreibung der Ausbreitung und chemischen Umwandlung reaktiver Luftschadstoffe, Verlag Shaker, Aachen, pp. 148.Google Scholar
  6. Kunz R. and Moussiopoulos N. (1995), Simulation of the Wind field in Athens Using Refined Boundary Conditions, Atmos. Environ. 29, 3375–3591.CrossRefGoogle Scholar
  7. Moussiopoulos N. (1989), Mathematische Modellierung mesoskaliger Ausbreitung in der Atmosphäre, Fortschr.-Ber. VDI Reihe 15 Nr. 64, VDI-Verlag Düsseldorf, pp. 316.Google Scholar
  8. Moussiopoulos N., ed. (1993), Special issue on APSIS, Environ. Software 8, 1–71.Google Scholar
  9. Moussiopoulos N., ed. (1995), Special issue on APSIS, Atmos. Environ. 29, 3573–3728.Google Scholar
  10. Moussiopoulos N. and Papagrigoriou S., eds. (1997), The Athens 2004 Air Quality Study, Proceedings of the International Workshop, Athens, 18–19 February 1997, in press.Google Scholar
  11. Moussiopoulos N., Sahm P. and Kessler Ch. (1995), Numerical simulation of photochemical smog formation in Athens, Greece-A case study, Atmos. Environ. 29, 3619–3632.CrossRefGoogle Scholar
  12. Poppe D., Andersson-Sköld Y.A., Baart A., Builtjes P.J.H., Das M., Fiedler F., Hov ø, Kirchner F., Kuhn M., Makar P.A., Milford J.B,. Roemer M.G.M., Ruhnke R., Simpson D., Stockwell W.R., Strand A., Vogel B. and Vogel?. (1996), Intercomparison of the gas-phase chemistry of several chemistry and transport models, EUROTRAC Special Report, ISS Garmisch-Partenkirchen.Google Scholar
  13. Simpson D. (1995), Biogenic emissions in Europe 2. Implications for control strategies,. J. Geophys. Res. 100, D11, 22891–22906.CrossRefGoogle Scholar
  14. Simpson D. (1996), private communications.Google Scholar
  15. Simpson D., Andersson-Sköld Y.A. and Jenkin M.E. (1993), Updating the chemical scheme for the EMHP MSC W oxidant model: current status. EMEP MSC-W Note 2/93, The Norwegian Meteorological Institute, Oslo, Norway.Google Scholar
  16. Smolarkiewicz P.K. (1984), A fully multidimensional positive definite advection transport algorithm with small implicit diffusion, J. comput. Phys. 54, 325.CrossRefGoogle Scholar
  17. Stockwell W.R., Kirchner F., Kuhn M. and Seefeld S. (1997), A new mechanism for regional atmospheric chemistry modeling,.J. Geophys. Res., (accepted for publication).Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • P. Sahm
    • 1
  • F. Kirchner
    • 1
  • N. Moussiopoulos
    • 1
  1. 1.Laboratory of Heat Transfer and Environmental EngineeringAristotle University ThessalonikiThessalonikiGreece

Personalised recommendations