Advertisement

Modeling of a Saharan Dust Event

  • G. Cautenet
  • F. Guillard
  • B. Marticorena
  • G. Bergametti
  • F. Dulac
  • J. Edy
Part of the NATO • Challenges of Modern Society book series (NATS, volume 22)

Abstract

We have coupled a nonhydrostatic mesoscale model with a simple but comprehensive mineral aerosol source scheme, along with a spectral sedimentation scheme. We present a simulation of a Saharan dust transport event (4 days), including mass uptake estimates, 3D transport and dry deposition. The model is initialized with ECMWF data. Meteosat imagery is used to check the dust cloud uptake and trajectory.

Keywords

Dust Concentration Dust Event Dust Cloud Dust Source Saharan Dust 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreae, M. O., Climate effects of changing atmospheric aerosol levels, World Survey of Climatology, XX, Future Climate of the World, Henderson-Sellers Ed., 1994Google Scholar
  2. d’Almeida, G. A., A model for Saharan dust transport J. Clim. Appl. Meteor., 24, 903–916, 1986.Google Scholar
  3. d’Almeida, G. A., On the variability of desert aerosol radiative characteristics, J. Geophys. Res., 92, 3017–3026, 1987.CrossRefGoogle Scholar
  4. Dulac, F., D. Tanré, G. Bergametti, P. Buat-Ménard, M. Desbois and D. Sutton, Assessment of the African airborne dust mass over Western Mediterranean sea using Meteosat data, J. Geophys. Res., 97, 2489–2506, 1992.CrossRefGoogle Scholar
  5. Gomes L., G. Bergametti, G. Coudé-Gaussen and P. Rognon, Submicron desert dusts: a sandblasting Process, J. Geophys. Res., 95, 13927–13935, 1990.CrossRefGoogle Scholar
  6. Gong, S. L., L. A. Barrie, J.-P. Blanchet and L. Spacek, Modeling size-distributed sea-salt aerosols in the atmosphere: an application using Canadian climate models, 22nd NATO/CMS International Technical Meeting on Air Pollution Modelling and its Applications, 244-251, June 2–6, 1997, Clermont-Ferrand, France.Google Scholar
  7. Jousseaume, S., Three-dimensional simulations of the atmospheric cycle of desert dust particles using a general circulation model, J. Geophys. Res., 95, 1909–1941, 1990.CrossRefGoogle Scholar
  8. Legrand, M., Etude des aérosols sahariens au-dessus de l’Afrique à l’aide du canal à 10 microns de Météosat: validation, interprétation et modélisation, Thèse de Doctorat d’Etat, Université des Sciences et Technologies de Lille, 1990.Google Scholar
  9. Marticorena, B. and G. Bergametti, Modeling the atmospheric dust cycle: 1-Design of a soilderived dust emission scheme. J. Geophys. Res., 100, 16415–16430, 1995.CrossRefGoogle Scholar
  10. Marticorena, B., G. Bergametti, B. Aumont, Y. Callot, C. N’Doumé and M. Legrand, Modeling the atmospheric dust cycle: 2-Simulation of Saharan dust sources. J. Geophys. Res., 102, 4387–4404, 1997.CrossRefGoogle Scholar
  11. Pielke, R. A., W. R. Cotton, R.L. Walko, C. J. Tremback, W. A. Lyons, L. D. Grasso, M. E. Nicholls, M. D. Moran, D. A. Wesley, T. J. Lee and J. H. Copeland, A comprehensive meteorological modeling system-RAMS. Meteorol. Atmos. Phys., 49, 69–91, 1992.CrossRefGoogle Scholar
  12. Seinfeld, J., Atmospheric Chemistry and Physics of Air Pollution, J. Wiley & s, 1986, 738 pp.Google Scholar

Copyright information

© Springer Science+Business Media New York 1998

Authors and Affiliations

  • G. Cautenet
    • 1
  • F. Guillard
    • 3
  • B. Marticorena
    • 2
  • G. Bergametti
    • 2
  • F. Dulac
    • 3
  • J. Edy
    • 1
  1. 1.LaMPUniversité Blaise-Pascal-CNRSAubièreFrance
  2. 2.LISAUniversités Paris 7 &12CréteilFrance
  3. 3.CFR/LMCEFrance

Personalised recommendations