Advertisement

Application of Linked Three-Dimensional PBL and Dispersion Models to New York City

  • R. Bornstein
  • S. Klotz
  • U. Pechinger
  • R. Salvador
  • R. Street
  • L. J. Shieh
  • F. Ludwig
  • R. Miller
Part of the NATO · Challenges of Modern Society book series (NATS, volume 10)

Abstract

The two-dimensional vorticity mode urban PBL model (called URBMET) of Bornstein (1975) has been extended to three dimensions. The model is used to simulate sea breeze circulations in the coastal urban environment of New York City (NYC). Output from the PBL model is used as input to a modified form of the three-dimensional Eulerian urban air pollution model developed by Shir and Shieh (1974). The dispersion model is used to simulate the distribution of sulfur dioxide concentrations in the NYC area resulting from point and area source emissions into the sea breeze circulation.

Keywords

Dispersion Model Geostrophic Wind Surface Boundary Layer Urban Boundary Layer Sulfur Dioxide Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bornstein, R.D. (1975): The Two-Dimensional URBMET Urban Boundary Layer Model. J. Appl. Meteor., 14, 1459–1477.CrossRefGoogle Scholar
  2. Bornstein, R.D. and A.D. Robock (1976): Effects of Variable and Unequal Time Steps for Advective and Diffusive Processes in Simulations of the Urban Boundary Layer. Mon. Wea. Rev., 104, 260–267.CrossRefGoogle Scholar
  3. Bornstein, R.D. and E. Runca (1977): Preliminary Investigations of SO2 Patterns in Venice, Italy, Using Linked PBL and K-Models, Including Removal Processes. Proc. Joint Conference on Applications of Air Pollution Meteorology, Nov. 22 — Dec. 2, 1977, Salt Lake City, Utah: Amer. Meteor. Soc. and Air Poll. Contr. Assn., 277–282.Google Scholar
  4. Bornstein, R.D., T. Morgan, Y.T. Tam, T. Loose, K. Leap, J. Sigafoose, and C. Berkowitz (1977a): New York Air Pollution Project of 1964–1969: Description of Data. EPA Report 600/4–77–035A, 134 pp.Google Scholar
  5. Bornstein, R.D., T. Morgan, Y.T. Tam, T. Loose, K. Leap, J. Sigafoose, and C. Berkowitz (1977b): New York Air Pollution Project of 1964–1969: The Data. EPA Report 600/4–77–035B, 213 pp.Google Scholar
  6. Bornstein, R.D. and W.T. Thompson (1981): Effects of Frictionally Retarded Sea Breeze and Synoptic Frontal Passage on Sulfur Dioxide Concentrations in New York City. J. Appl. Meteor., 20, 843–858.CrossRefGoogle Scholar
  7. Briggs, G.A. (1969): Plume Rise. USAEC Critical Review Series, TID-25075, Springfield, VA: Clearing-house for Federal Scientific and Technical Information.CrossRefGoogle Scholar
  8. Briggs, G.A.(1975): Lectures on Air Pollution and Environmental Impact Analyses. Workshop Proceedings, Sept. 29–0ct. 3, 1975. Boston, Mass., 59–111.Google Scholar
  9. Briggs, G.A. (1979): Atmospheric Science and Power Production. National Oceanic and Atmospheric Administration, Oak Ridge, Temm., ATDL File No. 79/6.Google Scholar
  10. Businger, J.A., et al. (1971): Flux Profile Relationships in the Atmospheric Surface Layer, J. Atmos. Sci., 28, 181–189.CrossRefGoogle Scholar
  11. Davidson, B. (1969): A Summary of the New York Urban Air Pollution Dynamics Research Program, J. Air Poll. Contr. Assn., 17, 154–158.CrossRefGoogle Scholar
  12. Dieterle, D. (1979): Simulation of Urban Surface Energy Balance, Including the Effects of Anthropogenic Heat Production. M.S. Thesis, Dept. of Meteorology, San Jose State Univ., San Jose, CA.Google Scholar
  13. Gaffen, D.K. (1984): Three-Dimensional Meteorological and Sulfur Dioxide Patterns in an Urban Environment During Sea Breeze and Synoptic Frontal Passages. M.S. thesis, Dept. of Meteorology, San Jose State University, 72 pp.Google Scholar
  14. Halpern, P., C. Simon, and L. Randall (1971): Source Emissions and the Vertically Integrated Mass Flux of Sulfur Dioxide Across the New York City Area. J. Appl. Meteor., 10, 715–724.CrossRefGoogle Scholar
  15. MacCracken, M.C., and R.D. Bornstein (1977): On the Treatment of Advection in Flux Formulations With Applications to Two Models of the Atmosphere. J. Comp. Phys., 23, 135–149.CrossRefGoogle Scholar
  16. Mellor, G.L. and T. Yamada (1982): Development of a Turbulence Closure Model for Geophysical Fluid Problems. Rev. Geophy. Space Sci., 20, 851–875.CrossRefGoogle Scholar
  17. O’Brien, J. (1970): On the Vertical Structure of the Eddy Exchange Coefficient in the Planetary Boundary Layer. J. Atmos. Sci.. 27, 1213–1215.CrossRefGoogle Scholar
  18. Pandolfo, J.P. (1966): Wind and Temperature for Constant Flux Boundary Layers in Lapse Conditions With a Variable Eddy Conductivity to Eddy Viscosity Ratio. J. Atmos. Sci., 29, 495–502.CrossRefGoogle Scholar
  19. Santhanam, K. (1980): One-Dimensional Simulation of Temperature and Moisture in Atmospheric and Soil Boundary Layers. M.S. Thesis, San Jose State Univ., San Jose, CA.Google Scholar
  20. Sasamori, T.(1970): A Numerical Study of Atmospheric and Soil Boundary Layers. J. Atmos. Sci., 27, 1122–1137.CrossRefGoogle Scholar
  21. Shieh, L.J. and C.C. Shir (1976): Development of an Urban Air Quality Simulation Model With Compatible RAPS Data. IBM Research Report RJ 1701, Palo Alto Scientific Center, Palo Alto, California.Google Scholar
  22. Shir, C.C. and L.J. Shieh (1974): A Generalized Urban Air Pollution Model and Its Application to the Study of SO2 Distributions in the St. Louis Metropolitan Area. J. Appl. Meteor., 19, 185–204.CrossRefGoogle Scholar
  23. Sutton, O.G. (1953): Micrometeorology. New York: McGraw-Hill, 333 pp.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • R. Bornstein
    • 1
  • S. Klotz
    • 2
  • U. Pechinger
    • 3
  • R. Salvador
    • 1
  • R. Street
    • 2
  • L. J. Shieh
    • 4
  • F. Ludwig
    • 5
  • R. Miller
    • 1
  1. 1.Department of MeteorologySan Jose State UniversitySan JoseUSA
  2. 2.Department of Civil EngineeringStanford UniversityStanfordUSA
  3. 3.Zentralanstalt für Meteorologie und GeodynamikWienAustria
  4. 4.IBM Scientific CenterPalo AltoCaliforniaUSA
  5. 5.SRIInternational Menlo ParkUSA

Personalised recommendations