Technical Considerations in Regional Aerosol Modeling

  • Christian Seigneur
  • Harold M. Barnes
Part of the NATO · Challenges of Modern Society book series (NATS, volume 10)


Particles that are emitted and formed in our atmosphereyield fumes, mist, and ashes. However, unlike the Greek mythological belief that a beautiful bird can be reborn from its ashes, the beauty of atmospheric ashes and particles appears only under certain angles when the light of Phebus can be directed advantageously by fine particles toward the human eye. Under other conditions, atmospheric particles adversely affect visibility by reducing visual range and delineating contrasting plumes. Fine particles are also inhaled by humans and may disturb the lung physiology when deposited in the tracheobronchial system. Moreover, the chemical species contained in these particles may disturb the ecological balance of our biota; for example, sulfate and nitrate particles that are deposited on the ground and on foliage acidify soils and watersheds.


Atmospheric Aerosol Aerosol Concentration Aerosol Model Aerosol Size Distribution Sectional Representation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkinson, R., and Lloyd, A.C., 1984, Evaluation of kinetic and mechanistic data for modeling of photochemical smog, J. Phys. Chem. Ref. Data, 13:315–444.CrossRefGoogle Scholar
  2. Bassett, M.E., and Seinfeld, J.H., 1983, Atmospheric equilibrium model of sulfate and nitrate aerosols, Atmos. Environ., 17:2237–2252CrossRefGoogle Scholar
  3. Bassett, M.E., and Seinfeld, J.H., 1984, Atmospheric equilibrium model of sulfate and nitrate aerosols—II. particle size analysis, Atmos. Environ., 18:1163–1170CrossRefGoogle Scholar
  4. Calvert, J.G., and Stockwell, W.R., 1983, Acid generation in the troposphere by gas-phase chemistry, Environ. Sci. Technol., 17:428A–443AGoogle Scholar
  5. Fox, D.L., Gery, M., and Jeffries, H.E., 1984, “Organic Aerosol Formation: OH vs. Ozone Oxidation Pathways,” Coordinating Research Council, Inc., Atlanta, GeorgiaGoogle Scholar
  6. Franzblau, E., Burton, C.S. and Hidy, G.M., 1984, Aerosol particle formation from ozone-terminal olefin reactions, Aerosol Sci. Technol., 3:167–176CrossRefGoogle Scholar
  7. Friedlander, S.K., 1977, “Smoke, Dust and Haze—Fundamentals of Aerosol Behavior,” John Wiley, New YorkGoogle Scholar
  8. Gautier, O., 1984, “Process Control Optimization Theory Applied to Complex Chemical Systems,” M.S. thesis, University of Minnesota, Minneapolis, MinnesotaGoogle Scholar
  9. Gelbard, F., Tambour, Y., and Seinfeld, J.H., 1980, Sectional representation for simulating aerosol dynamics, J. Colloid Interface Sci., 76:541–556CrossRefGoogle Scholar
  10. Gillani, N.V., and Wilson, W.E., 1983, Gas-to-particle conversion of sulfur in power plant plumes--II. observations of liquid-phase conversions, Atmos. Environ., 17:1739–1752CrossRefGoogle Scholar
  11. Greenfield, S., 1957, Rain scavenging of radioactive particulate matter from the atmosphere, J. Meteorol., 14:115–125CrossRefGoogle Scholar
  12. Grosjean, D., 1984, Atmospheric reactions of ortho-cresol: gas phase and aerosol products, Atmos. Environ., 18:1641–1652CrossRefGoogle Scholar
  13. Harrison, R.M. and Pio, C.A., 1983, Major ion composition and chemical associations of inorganic atmospheric aerosols, Environ. Sci. Technol. 17:167–174CrossRefGoogle Scholar
  14. Harrison, R.M., and Sturges, W.T., 1984, Physico-chemical speciation and transformation reactions of particulate atmospheric nitrogen and sulphur compounds, Atmos. Environ., 18:1829–1833.CrossRefGoogle Scholar
  15. Heisler, S.L., and Friedlander, S.K., 1977, Gas-to-particle conversion in photochemical smog: aerosol growth laws and mechanisms of organics, Atmos. Environ., 11:157–168CrossRefGoogle Scholar
  16. Kerr, J.A., and Calvert, J.G., 1984, “Chemical Transformation Modules for Eulerian Acid Deposition Models—Volume I: The Gas-Phase Chemistry,” U.S. Environmental Protection Agency, Research Triangle Park, North CarolinaGoogle Scholar
  17. Killus, J.P., and Whitten, G.Z., 1984, Unpublished manuscript. Systems Applications, Inc., San Rafael, CaliforniaGoogle Scholar
  18. Lamb, R.G., 1984a, “A Regional Scale (1000 km) Model of Photochemical Air Pollution, Part 2, Input Processor Network Design,” EPA-600/3–84–085, U.S. Environmental Protection Agency, Research Triangle Park, North CarolinaGoogle Scholar
  19. Lamb, R.G., 1984b, Air pollution models as descriptors of cause-effect relationships, Atmos. Environ., 18:591–606.CrossRefGoogle Scholar
  20. Lamb, R.G., 1983, “A Regional Scale (1000 km) Model of Photochemical Air Pollution, Part 1, Theoretical Formulation,” EPA-600/3–83–03r, U.S. Environmental Protection Agency, Research Triangle Park, North CarolinaGoogle Scholar
  21. Lewis, C.W., and Macias, E.S., 1980, Composition of size-fractionated aerosol in Charleston, West Virginia, Atmos. Environ., 14:185–194CrossRefGoogle Scholar
  22. McMurry, P.H., 1983, New particle formation in the presence of an aerosol: rates, time scales, and sub-0.01 urn size distributions, J. Colloid Interface Sci., 95:72–80CrossRefGoogle Scholar
  23. McMurry, P.H., 1980, The dynamics of secondary sulfur aerosols, in: “Atmospheric Sulfur Deposition: Environmental Impact and Health Effects,” Shriner, Richmond, and Lindberg, eds., Ann Arbor Science Publishers, Inc., Ann Arbor, Michigan.Google Scholar
  24. McMurry, P.H., Takano, H., and Anderson, G.R., 1983, A study of the ammonia (gas)-sulfuric acid (aerosol) reaction rate, Environ. Sci. Technol., 17:347–351CrossRefGoogle Scholar
  25. McMurry, P.H., and Wilson, J.C., 1983, Droplet phase (heterogeneous) and gas phase (homogeneous) contributions to secondary ambient aerosol formation as functions of relative humidity, J. Geophys. Res., 88:5101–5108CrossRefGoogle Scholar
  26. McMurry, P.H., and Wilson, J.C., 1982, Growth laws for the formation of secondary ambient aerosols: implications for chemical conversion mechanisms, Atmos. Environ., 16:121–134.CrossRefGoogle Scholar
  27. Novak, J.H., 1984 “Implementation of the EPA Regional Oxidant Model System”, 77th Air Pollution Control Association Annual Meeting, San Francisco, California, 25–29 June 1984.Google Scholar
  28. Radke, L.F., Hobbs, P.V., and Eltgroth, M.W., 1980, Scavenging of aerosol particles by precipitation, J. Appl. Meteorol., 19:715–722CrossRefGoogle Scholar
  29. Saxena, P., 1984, Unpublished manuscript. Systems Applications, Inc., San. Rafael, California.Google Scholar
  30. Saxena, P., Seigneur, C., and Peterson, T.W., 1983, Modeling of multiphase atmospheric aerosols, Atmos. Environ., 17:1315–1329CrossRefGoogle Scholar
  31. Schere, K.L., and Possiel, N.C., 1984, “U.S. EPA Regional Oxidant Model-Background and Overview,” 77th Air Pollution Control Association Annual Meeting, San Francisco, California, 25–29 June 1984.Google Scholar
  32. Schwartz, S.E., and White, W.H., 1983, Kinetics of reactive dissolution of nitrogen oxides into aqueous solution, Adv. Environ. Sci. Technol., 12:1–116Google Scholar
  33. Sehmel, G.A., and Hodgson, W.H., 1980, A model for predicting dry deposition of particles and gases to environmental surfaces, AIChE Symposium Series, 76:218–230Google Scholar
  34. Seigneur, C., 1982, A model of sulfate aerosol dynamics in atmospheric plumes, Atmos. Environ., 16:2207–2228CrossRefGoogle Scholar
  35. Seigneur, C., and Saxena, P., 1984, A study of atmospheric acid formation in different environments, Atmos. Environ., 18:2109–2124CrossRefGoogle Scholar
  36. Seigneur, C., Saxena, P., and Roth, P.M., 1985, Chemistry of sulfate and nitrate formation, in: “Air Pollution Modeling and Its Applications,” 4:129–154, C. de Wispelaere, ed., Plenum Press, New YorkGoogle Scholar
  37. Seigneur, C., Stephanopoulos, G., and Carr, R.W., 1982, Dynamic sensitivity analysis of chemical reaction systems--a variational method, Chem. Eng. Sci., 37:845–853CrossRefGoogle Scholar
  38. Seinfeld, J.H., and Bassett, M., 1980, Effect of the mechanism of gas-to-particle conversion on the evolution of aerosol size distributions, in: “Heterogeneous Atmospheric Chemistry,” pp 6–12, D.R. Schryer, ed., American Geophysical Union, Washington, D.C.Google Scholar
  39. Stedman, D., 1985, Private communication.Google Scholar
  40. Stelson, A.W., Friedlander, S.K., and Seinfeld, J.H., 1979, A note on the equilibrium relationship between ammonia and nitric acid and particulate ammonium nitrate, Atmos. Environ., 13:369–371CrossRefGoogle Scholar
  41. Stelson, A.W., and Seinfeld, J.H., 1982a, Relative humidity and temperature dependence of the ammonium nitrate dissociation constant, Atmos. Environ., 16:983–992CrossRefGoogle Scholar
  42. Stelson, A.W., and Seinfeld, J.H., 1982b, Relative humidity and pH dependence of the vapor pressure of ammonium nitrate-nitric acid solution at 25°C, Atmos. Environ., 16:993–1000CrossRefGoogle Scholar
  43. Suck, S.H., and Brock, J.R., 1979, Evolution of atmospheric aerosol particle size distributions via Brownian coagulation: numerical simulation, J. Aerosol Sci., 10:581–590CrossRefGoogle Scholar
  44. Tsang, T.H., and Brock, J.R., 1983, Simulation of condensational aerosol growth by condensation and evaporation, Aerosol Sci. Technol., 2:311–320.Google Scholar
  45. Tuazon, E.C., Atkinson, R., Plum, C.N., Winer, A.M., and Pitts, J.N. Jr., 1983, The reaction of gas-phase N2O5 with water vapor, Geophys. Res. Lett., 10:953–956CrossRefGoogle Scholar
  46. Wang, P.K., Grover, S.N., and Pruppacher, H.R., 1978, On the effect of electric charges on the scavenging of aerosol particles by clouds and small raindrops, J. Atmos. Sci., 35:1735–1743CrossRefGoogle Scholar
  47. Warren, D.R., and Seinfeld, J.H., 1984, Simulation of aerosol size distribution evolution in systems with simultaneous nucleation, condensation, and coagulation, Aerosol Sci. Technol., 4:31–43Google Scholar
  48. Whitby, E., and McMurry, P.H., 1984, Private communication.Google Scholar
  49. Whitby, K.T., 1981a, Determination of aerosol growth rates in the atmosphere using lumped aerosol dynamics, J. Aerosol Sci., 12:174–178CrossRefGoogle Scholar
  50. Whitby, K.T., 1981b, “Aerosol and Ozone Formations in the Columbus, Ohio Urban Plume on July 29 and 30, 1980: A Preliminary Report,” Particle Technology Laboratory, Departement of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota (Publication No. 447)Google Scholar
  51. Wolff, G.T., Kelly, N.A., Ferman, M.A., and Morrison, M.L., 1983, Rural measurements of the chemical composition of airborne particles in the eastern United States, J. Geophys. Res., 88:10769–10775CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Christian Seigneur
    • 1
  • Harold M. Barnes
    • 2
  1. 1.Systems Applications Inc.San RafaelUSA
  2. 2.Atmospheric Sciences Research LaboratoryU.S. Environmental Protection AgencyResearch Triangle ParkUSA

Personalised recommendations