Skip to main content

Parameterization of the Atmospheric Boundary Layer for Air Pollution Dispersion Models

  • Chapter
Air Pollution Modeling and Its Application V

Part of the book series: NATO · Challenges of Modern Society ((NATS,volume 10))

Abstract

Most of the gaseous pollutants that are emitted into the air are released into the Atmospheric Boundary Layer (ABL). The main characteristic of the ABL is turbulence. Turbulent flows have a wide range of length scales. The scales are bounded from above by the geometry of the flow field and from below by molecular effects. The structure of turbulence is determined by the various sources as well as by the imposed length and time scales. The turbulence in the ABL, therefore, is multifacet. The outstanding characteristic of turbulence is its immense ability to disperse and transport momentum, heat and also contaminants. Therefore the laws, that characterize the turbulence also characterize the atmospheric dispersion (Tennekes and Lumley, 1972; Pasquill and Smith, 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baerentsen, J.H., and Berkowicz, R., 1984, Monte Carlo simulation of plume dispersion in the convective boundary layer, Atmos. Environ., 18, 701:712.

    Google Scholar 

  • Barad, M.L., Ed., 1958, Project Prairie grass, a Field Program in diffusion. Geophys. Res. Rap. no. 59, Vols. 1 and 2, Geophysics Research Directorate. Air Force Cambridge Research Center, Bedford.

    Google Scholar 

  • Benkley, C.W. and Schulman L.L., 1979, Estimating hourly mixing depths from historical meteorological data, J. Appl. Meteor., 18, 772:780.

    Google Scholar 

  • Berkowicz, R. and Prahm, L.P., 1982, Evaluation of the profile method for estimation of surface fluxes of momentum and heat, Atmos. Environ., 16, 2809–2819.

    Article  CAS  Google Scholar 

  • Berkowicz, R., Baerentsen, J.H., Jensen, A.B., Markvorsen, J.S., Nielsen, J.B., Olesen, H.R., Prahm, L.P., 1983, An operational air pollution model, Proceed. 14th International Technical Meeting on air Pollutions Modeling and its Application, Copenhagen, sept. 27–30.

    Google Scholar 

  • Briggs, G.A., 1983, Diffusion modeling with convective scaling and effects of surface inhomogeneities, AMS Speciality Conference on Air Quality Modeling of the Urban Boundary Layer, 29 nov-2 dec, Baltimore.

    Google Scholar 

  • Businger, J.A., 1973, Turbulent transfer in the atmospheric surface layer, in: “Workshop on Micrometeorology”, D.A. Haugen, ed., Amer. Meteor. Soc, Boston, 67:100.

    Google Scholar 

  • Businger, J.A., Wyngaard, J.C., Izumi, Y., and Bradley, E.F., 1971, Flux-profile relationships in the atmospheric surface layer, J. Atmos. Sci., 28, 181:189.

    Google Scholar 

  • Carf, D.M., Tarbeil, T.C. and Panofsky, H.A., 1973, Profiles of Wind and Temperature from Towers over Homogeneous Terrain, J. Atmos. Sci., 30, 788:794.

    Google Scholar 

  • Caughey, S.J., 1982, Observed characteristics of the atmospheric boundary layer, in: “Atmospheric Turbulence and Air Pollution Modeling”, F.T.M. Nieuwstadt and H. van Dop, eds., D. Reidel Publishing Company, Dordrecht, 107:158.

    Google Scholar 

  • Davenport, A.G., 1960, Rationale for determining design wind velocities, J. Atm. Soc. Civ. Eng. (Struct. Div.), 86, 39:68.

    Google Scholar 

  • Deardorff, J.W., 1970, Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection, J. Atmos. Sci., 27, 1211:1213.

    Google Scholar 

  • Deardorff, J.W. and Willis, G.E., 1975, A parameterization of diffusion into the mixed layer, J. Appl. Meteor., 14, 1451:1458.

    Google Scholar 

  • Deardorff, J.W., Willis, G.E. and Stockton, B.H., 1980, Laboratory studies of the entrainment zone of a convectively mixed layer, J. Fluid Mech., 100, 41:46.

    Google Scholar 

  • Deardorff, J.W. and Willis, G.E., 1984, Ground level concentration fluctuations from a buoyant and a non-buoyant,source within a laboratory convectively mixed layer, Atmos. Environ., 18, 1297:1309.

    Google Scholar 

  • De Baas, A.F., Van Dop, H. and Nieuwstadt, F.T.M., 1985, An application of the Langevin equation for inhomogeneous conditions to dispersion in a convective boundary layer, Quart. J. Roy. Meteor. Soc. (accepted)

    Google Scholar 

  • De Bruin, H.A.R. and Holtslag, A.A.M., 1982, A simple parameterization of the surface fluxes of sensible and latent heat during daytime compared with the Penman-Monteith concept, J. Appl. Meteor,, 21, 1610–1621.

    Article  Google Scholar 

  • Draxler, R.R., 1976, Determination of atmospheric diffusion parameters, Atmos. Environ,, 10, 363:372.

    Google Scholar 

  • Driedonks, A.G.M., 1982, Models and observations of the growth of the atmospheric boundary layer, Bound.-Layer Meteorol., 23, 283:306.

    Google Scholar 

  • Driedonks, A.G.M., Van Dop, H. and Kohsiek, W., 1978, Meteorological Observations on the 213 Mast at Cabauw, in the Netherlands, Fourth Symposium on Meteorol. Obs, and Inst., April 10–14, Amer. Meteorol. Soc, 41:46.

    Google Scholar 

  • Driedonks, A.G.M. and Tennekes, H., 1984, Entrainment effects in the well-mixed atmospheric boundary layer. Boundary-Layer Meteor., 30, 75:105.

    Google Scholar 

  • Dyer, A.J., 1974, A review of flux-profile relationships, Bound.-Layer Meteorol. 7, 363:372.

    Google Scholar 

  • Garratt, J.R., Wyngaard, J.C. and Francey, R.J., 1982, Winds in the Atmospheric Boundary Layer — Prediction and Observation, J. Atm. Sci., 39, 1307:1316.

    Google Scholar 

  • Gryning, S.E., 1981, Elevated source SF6-tracer dispersion experiments in the Copenhagen area, Risø National Laboratory Report R-446, Roskilde, Denmark.

    Google Scholar 

  • Gryning, S.E., and Lyck, E., 1984, Atmospheric dispersion from elevated sources in an urban area: Comparison between tracer experiments and model calculations, J. Clim. Appl. Meteorol., 23, 651:660.

    Google Scholar 

  • Gryning, S.E., Lyck, E., and Hedegaard, K., 1978, Short-range diffusion experiments in unstable conditions over inhomogeneous terrain, Tellus, 30, 392:403.

    Google Scholar 

  • Gryning, S.E., Van Ulden, A.P. and Larsen, S., 1983, Dispersion from a continuous ground-level source investigation by a K model. Quart. J. Roy. Meteorol. Soc, 109, 355:364.

    Google Scholar 

  • Hanna, S.R., Briggs, G.A., Deardorff, J.W., Egan, B.A., Gifford, F.A., Pasquill, F., 1977, AMS Workshop on stability classification schemes and sigma curves-Summary of recommendations, Bull. Amer. Meteor. Soc.58, 1305:1309.

    Google Scholar 

  • Hicks, B.B., 1976, Wind Profile Relationships from the “Wangara” Experiment, Quart. J. R. Meteorol. Soc.102, 535:551.

    Google Scholar 

  • Hoffnagle, G., Smith, F., Smith, M.E., Crawford, T.V., and Lockhart, T.J., 1981, On-site meteorological instrumentation requirements to characterize diffusion from point sources — A workshop, 15–17 Jan., 1980, Raleigh, N.C., Bull. Amer. Met. Soc.62, 255:261.

    Google Scholar 

  • Højstrup, J., 1982, Velocity spectra in the unstable planetary boundary layer, J. Atmos. Sci.39, 2239:2248.

    Google Scholar 

  • Holtslag, A.A.M., 1984a, Estimates of vertical diffusion from sources near the ground in strongly unstable conditions, in: “Air Pollution Modeling and its Application III”, C. De Wispelaere, ed., Plenum Press, New York, 619:630.

    Google Scholar 

  • Holtslag, A.A.M., 1984b, Estimates of diabatic wind speed profiles from near surface weather observations, Bound.-Layer Meteorol.29, 225:250.

    Google Scholar 

  • Holtslag, A.A.M., and Van Ulden, A.P., 1983, A simple scheme for daytime estimates of the surface fluxes from routine weather data, J. Clim. Appl. Meteor., 22, 517:529.

    Google Scholar 

  • Holtslag, A.A.M., and Nieuwstadt, F.T.M., 1985, Scaling the atmospheric boundary layer J. Clim. Appl. Meteor, (submitted)

    Google Scholar 

  • Hunt, J.C.R., 1982, Diffusion in the stable boundary layer, in: “Atmospheric Turbulence and Air Pollution Modeling”, F.T.M. Nieuwstadt and H. van Dop, eds., Reidel, Dordrecht, 231:274.

    Google Scholar 

  • Irwin, J.S., 1983, Estimating plume dispersion — A comparison of several sigma schemes, J. Clim. Appl. Meteorol., 22, 92:114.

    Google Scholar 

  • Irwin, J.S, Gryning, S.E., Holtslag, A.A.M., and Sivertsen, B., 1985, Atmospheric dispersion modeling based on boundary layer parameterization, US EPA report, to appear.

    Google Scholar 

  • Kretzschmar, J.G. and Mertens, I., 1984, Influence of the turbulence typing scheme upon the cumulative frequency distributions of the calculated relative concentrations for different averaging times, Atmos. Environ., 18, 2377:2393.

    Google Scholar 

  • Lamb, R.G., 1982, Diffusion in the convective boundary layer, in: “Atmospheric Tubulence and Air Pollution Modeling”, F.T.M. Nieuwstadt and H. van Dop, eds., Reidel Publishing Company, Dordrecht, 159:230.

    Google Scholar 

  • Monin, A.S. and Yaglom, A.M., 1971, Statistical Fluid Mechanics: Mechanics of Turbulence, Vol. 1, 3th printing, MIT Press, London.

    Google Scholar 

  • Monteith, J.L., 1981, Evaporation and surface temperature, Quart. J. Roy. Meteor. Soc.107, 1:27.

    Google Scholar 

  • Nicholls, S., and Readings, C.J., 1979, Aircraft observations of the structure of the lower boundary over the sea, Quart. J. Roy. Meteorol. Soc, 105, 785:802.

    Google Scholar 

  • Nieuwstadt, F.T.M., 1980, Application of mixed-layer similarity to the observed dispersion from a ground-level source, J. of Appl. Meteorol., 19, 157:162.

    Google Scholar 

  • Nieuwstadt, F.T.M. and Van Ulden, A.P., 1978, A numerical study on the vertical dispersion of passive contaminants from a continuous source in the atmospheric boundary layer, Atmos. Environ., 12, 2119:2124.

    Google Scholar 

  • Nieuwstadt, F.T.M., 1984a, The turbulent structure of the stable, nocturnal boundary layer, J. Atm. Sci., 41, 2202:2216.

    Google Scholar 

  • Nieuwstadt, F.T.M., 1984b, Some aspects of the turbulent stable boundary layer, Boundary-Layer Meteorol., 30, 31:55.

    Google Scholar 

  • Olesen, H.R., Larsen, S.E. and Højstrup, J., 1984, Modeling velocity spectra in the lower part of the planetary boundary layer. Boundary-Layer Meteorol., 29, 285:312.

    Google Scholar 

  • Panofsky, H.A., 1978, Matching in the convective planetary boundary layer, J. Atmos. Sci., 272:276.

    Google Scholar 

  • Panofsky, H.A. and Dutton, J.A., 1984, “Atmospheric Turbulence, models and methods for engineering applications”, Wiley, New York.

    Google Scholar 

  • Pasquill, F. and Smith, F.B., 1983, “Atmospheric Diffusion”, 3th edition, John Wiley and Sons, London, 437 pp.

    Google Scholar 

  • Paulson, C.A., 1970, The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer, J. Appl. Meteor., 9, 856:861.

    Google Scholar 

  • Pearson, H.J., Puttock, J.S., and Hunt, J.C.R., 1983, A statistical model of fluid element motions and vertical diffusion in a homogeneous stratified turbulent flow, J. Fluid Mech., 129, 219:249.

    Google Scholar 

  • Poreh, M. and Cermak, J.E., 1984, Windtunnel simulation of diffusion in a convective boundary layer, Boundary-Layer Meteorol., 30, 431:455.

    Google Scholar 

  • Sivertsen, B., 1978, Dispersion parameters determined from measurements of wind fluctuations (σθ), temperature and wind profiles. Proceedings of the 9th International Technical Meeting on Air Pollution and Its Application, Toronto, 251:261.

    Google Scholar 

  • Sutton, O.G., 1953, “Micrometeorology”, McGraw-Hill Book Company, New York.

    Google Scholar 

  • Sedifian, L. and Bennett, E., 1980, A comparison of turbulence classification schemes,Atmos Environ., 14, 741:750.

    Google Scholar 

  • Tennekes, H., 1970, Free convection in the turbulent Ekman layer of the atmosphere, J. Atmos. Sci., 27, 1027:1034.

    Google Scholar 

  • Tennekes, H., 1982, Similarity relations scaling laws and spectral dynamics, in: “Atmospheric Turbulence and Air Pollution Modeling”, F.T.M. Nieuwstadt and H. van Dop, eds., Reidel, Dordrecht, 37:68.

    Google Scholar 

  • Tennekes, H., and Lumley, J.L., 1972, “A first course in Turbulence”, 5th printing 1978, MIT Press, Cambridge, Massachusetts, USA.

    Google Scholar 

  • Van Dop, H., Nieuwstadt, F.T.M. and Hunt, J.C.R., 1985, Random walk models for particle displacements in inhomogeneous unsteady turbulent flows, Physics of Fluids (accepted for publication).

    Google Scholar 

  • Van Duuren, H. and Nieuwstadt, F.T.M., 1980, Dispersion from the 213 m high meteorological mast at Cabauw in the Netherlands, in: “Studies in Environmental Science”, 8, Elsevier Amsterdam, 77:90.

    Google Scholar 

  • Van Ulden, A.P., 1978, Simple estimates of vertical diffusion from sources near the ground, Atmos. Environ., 12, 2121:2129.

    Google Scholar 

  • Van Ulden, A.P. and Holtsïag, A.A.M., 1983, The stability of the Atmospheric Surface Layer during nighttime, Sixth Symp. on Turbulence and Diffusion, March 22–25, Amer. Meteorol. Soc., Boston, 257:260.

    Google Scholar 

  • Van Ulden, A.P. and Holtslag, A.A.M., 1985, Estimation of Atmospheric boundary Layer Parameters for Diffusion Applications, J. Clim. Appl. Meteor, (accepted).

    Google Scholar 

  • Venkatram, A., 1980, Estimating the Monin-Obukhov length in the stable boundary layer for dispersion calculations, Boundary-Layer Meteorol., 19, 481:485.

    Google Scholar 

  • Venkatram, A., 1984, The uncertainty in estimating dispersion in the convective boundary layer, Atmos. Environ., 18, 307:310.

    Google Scholar 

  • Venkatram, A., Strimaitis, D. and Discristofaro, D., 1984, A semi-empirical model to estimate vertical dispersion of elevated releases in the stable boundary layer, Atmos. Environ., 18, 923:928.

    Google Scholar 

  • Weil, J.C., 1983, Application of advances in planetary boundary layer understanding to diffusion modeling, Proceedings 6th symposium on Turbulence and Diffusion, March 22–25, Boston, AMS, 42:46.

    Google Scholar 

  • Wetzel, P., 1982, Toward parameterization of the stable boundary layer, J. Appl. Meteor., 21, 7:13.

    Google Scholar 

  • Wieringa, J., 1980, Representativeness of wind observations at airports, Bull. Amer. Meteor. Soc, 51, 962:971.

    Google Scholar 

  • Wieringa, J., 1981, Estimation of mesoscale and local-scale roughness for atmospheric transport modeling, in: 11th International Technical Meeting on Air Pollution Modeling and its Application, Plenum, New York.

    Google Scholar 

  • Wilczak, J.M. and Phillips, M.S., 1984, An indirect estimation of convective boundary layer structure for use in routine dispersion models, Proceedings 4th Joint Conference on Applications of Air Pollution Meteorology, Oct. 16–19, Portland, AMS, Boston.

    Google Scholar 

  • Willis, G.E., and Deardorff, J.W, 1978, A laboratory study of dispersion from an elevated source within a modeled convective mixed layer, Atmos. Environ., 12, 1305:1311.

    Google Scholar 

  • Wyngaard, J.C., 1982, Boundary Layer Modeling, in: “Atmospheric Turbulence and Air Pollution Modeling”, F.T.M. Nieuwstadt and H. van Dop, eds., Reidel, Dordrecht, 159:230.

    Google Scholar 

  • Wyngaard, J.C., 1984, Toward convective boundary layer parameterization: A scalar transport module, J. Atmos. Sci., 41, 1959:1969.

    Google Scholar 

  • Wyngaard, J.C. and Brost, R.A., 1984, Top-down and bottom-up scalar diffusion in the convective boundary layer, J. Atmos. Sci., 41, 102:112.

    Google Scholar 

  • Zilitinkevich, S.S., 1972, On the determination of the height of the Ekman boundary layer, Bound.-Layer Meteorol.3, 141:145.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Holtslag, A.A.M., Gryning, S.E., Irwin, J.S., Sivertsen, B. (1986). Parameterization of the Atmospheric Boundary Layer for Air Pollution Dispersion Models. In: De Wispelaere, C., Schiermeier, F.A., Gillani, N.V. (eds) Air Pollution Modeling and Its Application V. NATO · Challenges of Modern Society, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9125-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9125-9_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9127-3

  • Online ISBN: 978-1-4757-9125-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics