Advertisement

Prolactin as an Immunomodulatory Hormone

  • Eva Nagy
  • Istvan Berczi
Part of the Hans Selye Symposia on Neuroendocrinology and Stress book series (HSSN, volume 3)

Abstract

The first experimental observation indicating the effect of prolactin (PRL) on the thymus was made by Smith in 1930. He observed that the thymus gland of hypophysectomized (Hypox) rats ceased to grow and regressed in weight to less than half of controls in long surviving animals. On the other hand, partially hypophysectomized rats showed an absolute weight loss no greater than the controls. These and other observations triggered many investigators to study the influence of hormones on lymphoid tissues. However, the lack of purified hormone preparations and proper assays at the time posed insurmountable difficulties which led to contradictions and confusion.1 Studies on the regulatory effect of the pituitary gland on bone marrow function have a similar history.2 During the past decade neuroendocrine immunoregulatory mechanisms have been investigated with increasing interest and the influence of PRL on lymphoid tissue and immune function has been reviewed in recent years.3–8

Keywords

Growth Hormone Natural Killer Activity Prolactin Receptor Large Granular Lymphocyte Dwarf Mouse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. F. Dougherty, Effects of hormones on lymphatic tissue, Physiol Rev. 32:397 (1952).Google Scholar
  2. 2.
    R.C. Crafts and H.A. Meineke, The anemia of hypophysectomized animals, Ann. NY Acad. Sci. 77:501 (1959).PubMedCrossRefGoogle Scholar
  3. 3.
    H.G. Friesen, G.D. DiMattia, and C.K.L. Too, Lymphoid tumor cells as models for studies of prolactin gene regulation and action, Prog. Neuroendocrinimmunol. 4:1 (1991).Google Scholar
  4. 4.
    I.C. Chikanza and G.S. Panayi, Hypothalamic-pituitary mediated modulation of immune function: prolactin as a neuroimmune peptide, Brit. J. Rheumatol. 30:203 (1991).CrossRefGoogle Scholar
  5. 5.
    L. Matera, G. Bellone and A. Cesano, Prolactin and the immune network, Adv. Neuroimmunol 1:158 (1991).CrossRefGoogle Scholar
  6. 6.
    K. Skwarlo-Sonta, Prolactin as an immunoregulatory hormone in mammals and birds, Immunol Lett. 33:105 (1992).PubMedCrossRefGoogle Scholar
  7. 7.
    K.W. Kelley, S. Arkins and Y.M. Li, Growth hormone, prolactin, and insulin-like growth factors: new jobs for old players, Brain Behav. Immun. 6:317 (1992).PubMedCrossRefGoogle Scholar
  8. 8.
    R.R. Gala, Prolactin and growth hormone in the regulation of the immune system, Proc. Soc. Exp. Biol Med. 198:513 (1991).PubMedGoogle Scholar
  9. 9.
    J.H. Jepson and L. Lowenstein, Hormonal control of erythropoiesis during pregnancy in the mouse, Br. J. Haematol 14:555 (1968).PubMedCrossRefGoogle Scholar
  10. 10.
    I. Berczi and E. Nagy, The effect of prolactin and growth hormone on hemolymphopoietic tissue and immune function, in: “Hormones and Immunity” I. Berczi and K. Kovacs, eds., MTP Press, Lancaster, UK (1987).Google Scholar
  11. 11.
    I. Berczi and E. Nagy, Human placental lactogen is a hemopoietic hormone, Br. J. Haematol 79:355 (1991).PubMedCrossRefGoogle Scholar
  12. 12.
    E. Nagy and I. Berczi, Pituitary dependence of bone marrow function, Br. J. Haematol 71:457 (1989).PubMedCrossRefGoogle Scholar
  13. 13.
    E. Nagy and I. Berczi, Hypophysectomized rats depend on residual prolactin for survival, Endocrinology 146:2776 (1991).CrossRefGoogle Scholar
  14. 14.
    G. Bhat, S.K. Gupta and B.R. Maiti, Influence of prolactin on mitogenic activity of the bursa of Fabricius of the chick, Gen. Comp. Endocrinol. 52:452 (1983).PubMedCrossRefGoogle Scholar
  15. 15.
    K. Skwarlo-Sonta, D. Rosolowska-Huszc, J. Sotowska-Brochocka and A. Gajewska, Daily variations in response of certain immunity indices to proalctin in white leghorn chickens, Exp. Clin. Endocrinol 87:195 (1986).PubMedCrossRefGoogle Scholar
  16. 16.
    R.M. Schaefer, F. Kokot, B. Kurner, M. Zech and A. Heidland, Normalization of elevated prolactin levels in hemodialysis patients on erythropoietin, Nephron 50:400 (1988).PubMedCrossRefGoogle Scholar
  17. 17.
    D.E. Carlson, H.G. Klemcke and D.S. Gann, Response of prolactin to hemorrhage is similar to that of adrenocorticotropin in swine, Am. J. Physiol. 258:R645 (1990).Google Scholar
  18. 18.
    J. Jurcovicova, R. Kvetnansky, M. Dobrakovova, D. Jezova, A. Kiss and G.B. Makara, Prolactin response to immobilization stress and hemorrhage: The effect of hypothalamic deafferentations and posterior pituitary denervation, Endocrinology 126:2527 (1990).PubMedCrossRefGoogle Scholar
  19. 20.
    A.I. Esquifino, M.A. Villanua, A. Szary, J. Yau and A. Bartke, Ectopic pituitary transplants restore immunocompetence in Ames dwarf mice, Acta Endocrinol 125:67 (1991).Google Scholar
  20. 21.
    C. Arezzini, V. De Gori, P. Tarli and P. Neri, Weight increase of body and lymphatic tissues in dwarf mice treated with human chorionic somatomammotropin (HCS), Proc. Soc. Exp. Biol Med. 141:98 (1972).PubMedGoogle Scholar
  21. 22.
    I. Berczi and E. Nagy, Prolactin and other lactogenic hormones, in: “Pituitary Function and Immunity,” I. Berczi, ed., CRC Press, Boca Raton, FL (1986).Google Scholar
  22. 23.
    I. Berczi, E. Nagy, S.M. De Toledo, R.J. Matusik and H.G. Friesen, Pituitary hormones regulate c-myc and DNA synthesis in lymphoid tissue, J. Immunol. 146:2201 (1991).PubMedGoogle Scholar
  23. 24.
    U. Singh and J.J.T. Owen, Studies on the maturation of thymus stem cells. The effects of catecholamines, histamine and peptide hormones on the expression of T cell alloantigens, Eur. J. Immunol. 6:59 (1976).PubMedCrossRefGoogle Scholar
  24. 25.
    D.H. Rüssel, K.T. Mills, F.J. Talamantes and H.A. Bern, Neonatal administration of prolactin antiserum alters the developmental pattern of T- and B-lymphocytes in the thymus and spleen of BALB/c female mice, Proc. Nat. Acad. Sci. USA 85:7404 (1988).CrossRefGoogle Scholar
  25. 26.
    R.J. Cross, J.L. Campbell, W.R. Markesbery and T.L. Roszman, Transplantation of pituitary grafts fail to restore immune function and to reconstitute the thymus glands of aged mice, Mech. Age. Dev. 56:11 (1990).CrossRefGoogle Scholar
  26. 27.
    M. Dardenne, W. Savino, M.C. Gagnerault C, T. Itoh and J.F. Bach, Neuroendocrine control of thymic hormonal production. I. Prolactin stimulates in vivo and in vitro the production of thymulin by human and murine thymic epithelial cells, Endocrinology 125:3 (1989).PubMedCrossRefGoogle Scholar
  27. 28.
    K. Skwarlo-Sonta, Mitogenic effect of prolactin on chicken lymphocytes in vitro, Immunol. Lett. 24:171 (1990).PubMedCrossRefGoogle Scholar
  28. 29.
    W. Pierpaoli, H.G. Kopp and E. Bianchi, Interdependence of thymic and neuroendocrine functions in ontogeny, Clin. Exp. Immunol. 24:501 (1976).PubMedGoogle Scholar
  29. 30.
    D.L. Healy, J. Bacher and G.D. Hodgen, Thymic regulation of primate fetal ovarian-adrenal differentiation, Biol. Reprod. 32:1127 (1985).PubMedCrossRefGoogle Scholar
  30. 31.
    M. Badamchian, B.L. Spangelo, T. Damavandy, R.M. MacLeod and A.L. Goldstein, Complete amino acid sequence analysis of a peptide isolated from the thymus that enhances release of growth hormone and prolactin, Endocrinology 128:1580 (1991).PubMedCrossRefGoogle Scholar
  31. 32.
    R.P.C. Shiu, H.P. Elsholtz, T. Tanaka, H.G. Friesen, P.W. Gout, C.T. Beer and R.L. Noble, Receptor-mediated mitogenic action of prolactin in a rat lymphoma cell line, Endocrinology 113:159 (1983).PubMedCrossRefGoogle Scholar
  32. 33.
    S. Ali, I. Pellegrini, and P.A. Kelly, A prolactin-dependent immune cell line (Nb2) expresses a mutant form of prolactin receptor, J. Biol. Chem. 266:20110 (1991).PubMedGoogle Scholar
  33. 34.
    D.H. Russell, R. Kibler, L. Matrisian, D.G. Larson, B. Poulos and B.E. Magun, Prolactin receptors on human T and B lymphocytes: antagonism of prolactin binding by cyclosporine, J. Immunol. 134:3027 (1985).PubMedGoogle Scholar
  34. 35.
    G. Bellussi, G. Muccioli, C. Ghe and R. Dicarlo, Prolactin binding sites in human erythrocytes and lymphocytes, Life Sci. 41:951 (1987).PubMedCrossRefGoogle Scholar
  35. 36.
    P.C. Hiestand, P. Melker, R. Nordmann, A. Grieder and C. Permongkol, Prolactin as a modulator of lymphocyte responsiveness provides a possible mechanism of action for cyclosporine, Proc. Natl. Acad. Sci. USA 83:2599 (1986).PubMedCrossRefGoogle Scholar
  36. 37.
    L. Matera, G. Muccioli, A. Cesano, G. Bellussi and E. Genazzani, Prolactin receptors on large granular lymphocytes: dual regulation by cyclosporin A, Brain Behav. Immun. 2:1 (1988).PubMedCrossRefGoogle Scholar
  37. 38.
    S.A. Aaronson, Growth factors and cancer, Science 254:1146 (1991).PubMedCrossRefGoogle Scholar
  38. 39.
    P.A. Kelly, J. Djiane, M.C. Postei-Vinay and M. Edery, The prolactin/growth hormone receptor family, Endocrine Rev. 12:235 (1991).CrossRefGoogle Scholar
  39. 40.
    J.A. Wells and A.M. de Vos, Structure and function of human growth hormone: implications for the hematopoietins, Annu. Rev. Biophys. Biomol. Struct. 22:329 (1993).PubMedCrossRefGoogle Scholar
  40. 41.
    H. Rui, J.Y. Djeu, G.A. Evans, P.A. Kelly and W.L. Farrar, Prolactin receptor triggering. Evidence for rapid tyrosine kinase activation, J. Biol. Chem. 267:24076 (1992).PubMedGoogle Scholar
  41. 42.
    C.V. Clevenger, A.L. Sillman and M.B. Prystowsky, Interleukin-2 driven nuclear translocation of prolactin in cloned lymphocytes-T, Endocrinology 127:3151 (1990).PubMedCrossRefGoogle Scholar
  42. 43.
    J.F. Richards, Ornithine decarboxylase activity in tissues of prolactin treated rats, Biochem. Biophys. Res. Commun. 63:292 (1975).PubMedCrossRefGoogle Scholar
  43. 44.
    D.R. Davila, C.K. Edwards III, S. Arkins, J. Simon and K.W. Kelley, Interferon-c-induced priming for secretion of superoxide anion and tumor necrosis factor-a declines in macrophages from aged rats, FASEB J. 4:2906 (1990).PubMedGoogle Scholar
  44. 45.
    P. Mukherjee, A.M. Mastro and W.C Hymer, Prolactin induction of interleukin-2 receptors on rat splenic lymphocytes, Endocrinology 126:88 (1990).PubMedCrossRefGoogle Scholar
  45. 46.
    B.L. Spangelo, N.R.S. Hall, P.C. Ross and A.L. Goldstein, Stimulation of in vivo antibody production and concanavalin-A-induced mouse spleen cell mitogenesis by prolactin, Immunopharmacology 14:11 (1987).PubMedCrossRefGoogle Scholar
  46. 47.
    A. Vidaller, L. Llórente, F. Larrea, J.P. Méndez, J. Alcocer-Varela and D. Alarcon-Segovia, T-cell dysregulation in patients with hyperprolactinemia: effect of bromocriptine treatment, Clin. Immunol. Immunopathol. 38:337 (1986).PubMedCrossRefGoogle Scholar
  47. 48.
    R. Gerli, C. Riccardi, I. Nicoletti, S. Orlandi, C. Cernetti, F. Spinozzi and P. Rambotti P, Phenotypic and functional abnormalities of T lymphocytes in pathological hyperprolactinemia, J. Clin. Immunol. 7:463 (1987).PubMedCrossRefGoogle Scholar
  48. 49.
    R.D. Harris, N.E. Kay, E.L. Seljeskog, K.J. Murray and S.D. Douglas, Prolactin suppression of leukocyte Chemotaxis in vitro, J. Neurosurg. 50:462 (1979).PubMedCrossRefGoogle Scholar
  49. 50.
    D. W. Montgomery, C. F. Zukoski, G. N. Shah, A. R. Buckley, T. Pacholczyk and D. H. Russell, Concanavalin A-stimulated murine splenocytes produce a factor with prolactin-like bioactivity and immunoreactivity, Biochem. Biophys. Res. Commun. 145:692 (1987).PubMedCrossRefGoogle Scholar
  50. 51.
    D.W. Montgomery, J.A. LeFevre, E.D. Ulrich, C.R. Adamson and C.F. Zukoski, Identification of prolactin-like proteins synthesized by normal murine lymphocytes, Endocrinology 127:2601 (1990).PubMedCrossRefGoogle Scholar
  51. 52.
    D.P. Hartmann, E.W. Bernton, T.K. Shakarijian and J.W. Holaday, Antibodies to prolactin inhibit murine and human lymphocyte proliferation in vitro by inhibiting lymphocyte response to T-and B-cell growth factors, FASEB J. 2:A1642 (1988) (Abstract).Google Scholar
  52. 53.
    D. P. Hartmann, J. W. Holadayand D. W. Bernton, Inhibition of lymphocyte proliferation by antibodies to prolactin, FASEB J. 3:2194 (1989).PubMedGoogle Scholar
  53. 54.
    N. Hattori, A. Shimatsu, M. Sugita, S. Kumagai and H. Imura, Immunoreactive growth hormne (GH) secretion by human lymphocytes: augmented release by exogenous GH, Biochem. Biophys. Res. Commun. 168:396 (1990).PubMedCrossRefGoogle Scholar
  54. 55.
    D.A. Weigent, J.E. Riley, F.S. Galin, R.D. Leboeuf and J.E. Blalock, Detection of growth hormone and growth hormone-releasing hormone-related messenger RNA in rat leukocytes by the polymerase chain reaction, Proc. Soc. Exp. Biol. Med. 198:643 (1991).PubMedGoogle Scholar
  55. 56.
    K.D. O’Neal, D.W. Montgomery, T.M. Truong and L.Y. Yulee, Prolactin gene expression in human thymocytes, Mol. Cell. Endocrinol. 87:R19 (1992).CrossRefGoogle Scholar
  56. 57.
    I. Pellegrini, J. J. Lebrun, S. Ali and P. A. Kelly, Expression of prolactin and its receptor in human lymphoid cells, Mol. Endocrinol. 6:1023 (1992).PubMedCrossRefGoogle Scholar
  57. 58.
    P. Sabharwal, R. Glaser, W. Lafuse, S. Varma, Q. Liu, S. Arkins, R. Kooijman, L. Kutz, K.W. Kelley and W.B. Malarkey, Prolactin synthesized and secreted by human peripheral blood mononuclear cells — an autocrine growth factor for lymphoproliferation, Proc. Natl. Acad. Sci. USA 89:7713 (1992).PubMedCrossRefGoogle Scholar
  58. 59.
    G.E. DiMattia, B. Gellersen, H.G. Bonnet and H.G. Friesen, A human B-lymphoblastoid cell line produces prolactin, Endocrinology 122:2508 (1988).CrossRefGoogle Scholar
  59. 60.
    B. Gellersen, G.E. DiMattia, H.G. Friesen and H.G. Bohnet, Regulations of prolactin secretion in the human B-lymphoblastoid cell line IM-9-P3 by dexamethasone but not other regulators of pituitary prolactin secretion, Endocrinology 125:2853 (1989).PubMedCrossRefGoogle Scholar
  60. 61.
    B. Gellersen, G.E. DiMattia, H.G. Friesen and H.G. Bohnet, Prolactin (PRL) mRNA from human decidua differs from pituitary PRL mRNA but resembles the IM-9-P3 lymphoblast PRL transcript, Mol. Cell. Endocrinol. 64:127 (1989).PubMedCrossRefGoogle Scholar
  61. 62.
    G.E. DiMattia, B. Gellersen, M.L. Duckworth and H.G. Friesen, Human prolactin gene expression: the use of an alternative noncoding exon in decidua and the IM-9-P3 lymphoblastoid cell line, J. Biol. Chem. 265:16412 (1990).Google Scholar
  62. 63.
    I.A. Baglia, D. Cruz and J.E. Shaw, An Epstein-Barr virus-negative Burkitt lymphoma cell line (sfRamos) secretes a prolactin-like protein during growth in serum free medium, Endocrinology 128:2266 (1991).PubMedCrossRefGoogle Scholar
  63. 64.
    S.J. Hatfill, R. Kirby, M. Hanley, E. Rybicki and L. Böhm, Hyperprolactinemia in acute myeloid leukemia and indication of ectopic expression of human prolactin in blast cells of a patient of subtype M4, Leukemia Res. 14:57 (1990).CrossRefGoogle Scholar
  64. 65.
    E. Nagy E and I. Berczi, Immunodeficiency in hypophysectomized rats, Acta Endocrinol. 89:530 (1978).PubMedGoogle Scholar
  65. 66.
    I. Berczi, E. Nagy, K. Kovacs and E. Horvath, Regulation of humoral immunity in rats by pituitary hormones, Acta Endocrinol. 98:506 (1981).PubMedGoogle Scholar
  66. 67.
    E. Nagy, I. Berczi and H.G. Friesen, Regulation of immunity in rats by lactogenic and growth hormones, Acta Endocrinol. 102:351 (1983).PubMedGoogle Scholar
  67. 68.
    E. Nagy, I. Berczi, G.E. Wren, S.L. Asa and K. Kovacs, Immunomodulation by bromocriptine, Immunopharmacology 6:231 (1983).PubMedCrossRefGoogle Scholar
  68. 69.
    R.J. Cross, J.L. Campbell and T.L. Roszman, Potentiation of antibody responsiveness after the transplantation of a syngeneic pituitary gland, J. Neuroimmunol. 25:29 (1989).PubMedCrossRefGoogle Scholar
  69. 70.
    J. Sotowska-Brochocka, D. Rosolowska-Huszcz, K. Skwarlo-Sonta and A. Gajewska, Effect of exogenous prolactin on immunity in chickens, Res. Vet. Sci. 37:123 (1984).PubMedGoogle Scholar
  70. 71.
    E. Nagy and I. Berczi, Prolactin and contact sensitivity, Allergy 36:429 (1981).PubMedCrossRefGoogle Scholar
  71. 72.
    E. Nagy and I. Berczi, Immunomodulation by tamoxifen and pergolide, Itnmunopharmacology 12:145 (1986).CrossRefGoogle Scholar
  72. 73.
    I. Berczi, E. Nagy, S.L. Asa and K. Kovacs, Pituitary hormones and contact sensitivity in rats, Allergy 38:325 (1983).PubMedCrossRefGoogle Scholar
  73. 74.
    P.C. Hiestand, J.M. Gale and P. Mekler, Soft immunosuppression by inhibition of prolactin release: synergism with cyclosporine in kidney allograft survival and in the localized graft-versus-host reaction, Transplant Proc. 18:870 (1986).Google Scholar
  74. 75.
    M.L. Wilner, R.B. Ettenger, M.A. Koyle and J.T. Rosenthal, The effect of hypoprolactinemia alone and in combination with cyclosporine on allograft rejection, Transplantation 49:264 (1990).PubMedCrossRefGoogle Scholar
  75. 76.
    E.W. Bernton, M.T. Meltzer and J.W. Holaday, Suppression of macrophage activation and T- lymphocyte function in hypoprolactinemic mice, Science 239:401 (1988).PubMedCrossRefGoogle Scholar
  76. 77.
    C. Cosson, I. Myara, R. Guillemain, C. Amrein, G. Dreyfus and N. Moatti, Serum prolactin as a rejection marker in heart transplantation, Clin. Chem. 35:492 (1989).PubMedGoogle Scholar
  77. 78.
    G. Mayer, J. Kovarik, E. Pohanka, M. Schwarz, H. Graf and W. Wolosczuk, Serum prolactin levels after kidney transplantation, Transplant Proc. 19:3724 (1987).PubMedGoogle Scholar
  78. 79.
    G.K. Shen, D.W. Montgomery, E.D. Ulrich, K.R. Mahoney and C.F. Zukoski, Upregulation of prolactin gene expression and feedback modulation of lymphocyte proliferation during acute allograft rejection, Surgery 112:387 (1992).PubMedGoogle Scholar
  79. 80.
    R. Gerli, P. Rambotti, I. Nicoletti, S. Orlandi, G. Migliorati and C. Riccardi, Reduced number of natural killer cells in patients with pathological hyperprolactinemia, Clin. Exp. Immunol. 64:399 (1986).PubMedGoogle Scholar
  80. 81.
    L. Matera, E. Ciccarelli, A. Cesano, F. Veglia, C. Miola and F. Camanni, Natural killer activity in hyperprolactinemic patients, Immunopharmacology 18:143 (1989).PubMedCrossRefGoogle Scholar
  81. 82.
    L. Matera, A. Cesano, G. Muccioli and F. Veglia, Modulatory effect of prolactin on the DNA synthesis rate and NK activity of large granular lymphocytes, Int. J. Neurosci. 51:265 (1990).PubMedCrossRefGoogle Scholar
  82. 83.
    J. Rovensky, M. Vigas, J. Marek, S. Blazickova, L. Vydetelkova and A. Takac, Evidence for immunomodulatory properties of prolactin in selected invitro and invivo situations, Int. J. Immunopharmacol. 13:267 (1991).PubMedCrossRefGoogle Scholar
  83. 84.
    P. Weisz-Carrington, Secretory immunobiology of the mamary gland, in: “Hormones and Immunity,” I. Berczi and K. Kovacs, eds., MTP Press, Lancaster, UK (1987).Google Scholar
  84. 85.
    L. Klareskog, U. Forsum and P.A. Peterson, Hormonal regulation of the expression of la antigens on mammary gland epithelium, Eur. J. Immunol. 10:958 (1980).PubMedCrossRefGoogle Scholar
  85. 86.
    M. Abdelhaleem and E. Sabbadini, Identification of immunosuppressive fractions of the rat submandibular gland, Immunology (1992) (submitted)Google Scholar
  86. 87.
    P. Walker, The mouse submaxillary gland: a model for the study of hormonally dependent growth factors, J. Endocrinol. Invest. 4:183 (1982).Google Scholar
  87. 88.
    E. Nagy, I. Berczi and E. Sabbadini, Endocrine control of the immunosuppressive activity of the submandibular gland, Brain Behav. Immun. 6:418 (1992).PubMedCrossRefGoogle Scholar
  88. 89.
    I. Berczi and E. Nagy, Neurohormonal control of cytokines during injury, in: “Brain Control of the Responses to Trauma,” N.J. Rothwell and F. Berkenbosch, eds., Cambridge University Press (1994) (in press).Google Scholar
  89. 90.
    R. DiCarlo, R. Meli and G. Muccioli, Effects of prolactin on rat paw oedema induced by different irritants, Agents Action 36:87 (1992).CrossRefGoogle Scholar
  90. 91.
    R. Meli, O. Gualillo, G.M. Raso and R. DiCarlo, Further evidence for the involvement of prolactin in the inflammatory response, Life Sci. 53:PL105 (1993).CrossRefGoogle Scholar
  91. 92.
    R. DiCarlo, R. Meli, M. Galdiero, I. Nuzzo, C. Bentivoglio and R. Carratelli, Prolactin protection against lethal effects of Salmonella typhimurium, Life Sci. 53:981 (1993).PubMedCrossRefGoogle Scholar
  92. 93.
    C.K. Edwards, S.M. Ghiasuddin, L.M. Yunger, R.M. Lorence, S. Arkins, R. Dantzer and K.W. Kelley, Invivo administration of recombinant growth hormone or gamma-interfron activates macrophages. Enhanced resistance to experimental Salmonella-typhimurium infection is correlated with generation of reactive oxygen intermediates, Infect. Immun. 60:2514 (1992).PubMedGoogle Scholar
  93. 94.
    C.K. Edwards, S. Arkins, L.M. Yunger, A. Blum, R. Dantzer and K.W. Kelley, The macrophage-activating properties of growth hormone, Cell. Mol. Neurobiol. 12:499 (1992).PubMedCrossRefGoogle Scholar
  94. 95.
    I. Berczi, F.D. Baragar, I.M. Chalmers, E.C Keystone, E. Nagy and R.J. Warrington, Hormones in self tolerance and autoimmunity: a role in the pathogenesis of rheumatoid arthritis? Autoimmunity 16:45 (1993).PubMedCrossRefGoogle Scholar
  95. 96.
    D. Buskila, D. Sukenik and Y. Shoenfeld, The possible role of prolactin in autoimmunity — a review, Am. I. Reprod. Immunol. 26:118 (1991).CrossRefGoogle Scholar
  96. 97.
    L.J. Jara, C. Lavalle and L.R. Espinoza, Does prolactin have a role in the pathogenesis of systemic lupus erythematosus, J. Rheumatol. 19:1333 (1992).PubMedGoogle Scholar
  97. 98.
    S.E. Walker, S.A. Allen and R.W. McMurray, Prolactin and autoimmune disease, Trends Endocrinol. Metab. 4:147 (1993).PubMedCrossRefGoogle Scholar
  98. 99.
    I. Berczi, The role of prolactin in the pathogenesis of autoimmune disease, Endocr. Pathol. 4:178 (1993).CrossRefGoogle Scholar
  99. 100.
    I. Berczi, The immunology of prolactin, Sem. Reprod. Endocrinol. 10:196 (1992).CrossRefGoogle Scholar
  100. 101.
    S. McCann, S. Karanth, A. Kamat, W.L. Dees, K. Lyson, M. Gimeno and V. Rettori, Induction by cytokines of the pattern of pituitary hormone secretion in infection, Neuroimmunomodulation 1:2 (1994).PubMedCrossRefGoogle Scholar
  101. 102.
    I. Berczi, Hormonal interactions between the pituitary and immune system, in: “Hormones and Immunity,” D. J. Grossman, ed., Springer-Verlag (1994) (in press).Google Scholar
  102. 103.
    H. Vierhapper, U. Hollenstein, M. Roden and P. Nowotny, Effect of endothelin-1 in man. Impact on basal and stimulated concentrations of luteinizing hormone, follicle-stimulating hormone, thyrotropin, growth hormone, corticotropin, and prolactin, Metabolism 42:902 (1993).PubMedCrossRefGoogle Scholar
  103. 104.
    I. Berczi, Neurohormonal immunorgulation, Endocr. Pathol. 1:197 (1990).CrossRefGoogle Scholar
  104. 105.
    F.M. Burnet. “The Clonal Selection Theory of Acquired Immunity,” Cambridge University Press (1959).Google Scholar
  105. 106.
    P. Bretscher and M. Cohn, A theory of self-nonself discrimination, Science 169:1042 (1970).PubMedCrossRefGoogle Scholar
  106. 107.
    N. A. Mitchison, Unique features of the immune system: their logical ordering and likely evolution, in: “Cell to Cell Interaction,” M. M. Burger, B. Sordat and R. M. Zinkernagel, eds., Karger, Basel (1990).Google Scholar
  107. 108.
    B.E. Bierer and S.J. Burakoff, T cell receptors: adhesion and signaling, Adv. Cancer Res. 56:49 (1991).PubMedCrossRefGoogle Scholar
  108. 109.
    W.E. Paul, The immune system, an introduction, in: “Fundamental Immunology,” 2nd edition, W.E. Paul, ed., Raven Press, New York (1989).Google Scholar
  109. 110.
    L. Sachs, The molecular control of blood cell development, Science 238:1374 (1987).PubMedCrossRefGoogle Scholar
  110. 111.
    S.C. Clark and R. Kamen, The human hematopoietic colony-stimulating factors, Science 236:1229 (1987).PubMedCrossRefGoogle Scholar
  111. 112.
    D. Metcalf, The granulocyte-macrophage colony-stimulating factors, Science 229:16 (1985).PubMedCrossRefGoogle Scholar
  112. 113.
    F. Melchers, Cell to cell cooperations in B-cell development and B-cell responses, in: “Cell to Cell Interaction,” M. M. Burger, B. Sordat and R. M. Zinkernagel, eds., Karger, Basel (1990).Google Scholar
  113. 114.
    J.J.T. Owen, Lymphocyte interaction in the thymus, in: “Cell to Cell Interaction,” M.M. Burger, B. Sordat and R.M. Zinkernagel, eds., Karger, Basel (1990).Google Scholar
  114. 115.
    J.W. Hadden, P.H. Malee, J. Coto and E.M. Hadden, Thymic involution in aging. Prospects for correction, Ann. NY Acad. Sci. 673:231 (1992).PubMedCrossRefGoogle Scholar
  115. 116.
    C.V. Clevenger, A.L. Sillman, J. Hanleyhyde and M.B. Prystowsky, Requirement for prolactin during cell cycle regulated gene expression in cloned lymphocytes-T, Endocrinology 130:3216 (1992).PubMedCrossRefGoogle Scholar
  116. 117.
    I. Berczi, The role of the growth and lactogenic hormone family in immune function, Neuroimmunomodulation (1994) (in press).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Eva Nagy
    • 1
  • Istvan Berczi
    • 1
  1. 1.Department of Immunology, Faculty of MedicineUniversity of ManitobaWinnipegCanada

Personalised recommendations