Advertisement

The Role of the Adrenergic/Cholinergic Balance in the Immune-Neuroendocrine Circuit

  • Konrad Schauenstein
  • Ingo Rinner
  • Peter Felsner
  • Dietmar Hofer
  • Harald Mangge
  • Elisabeth Skreiner
  • Peter Liebmann
  • Amiela Globerson
Part of the Hans Selye Symposia on Neuroendocrinology and Stress book series (HSSN, volume 3)

Abstract

The concept of an extrinsic regulation of the immune system through neuroendocrine signals is well established, as is the fact that the immune system in turn informs the brain about contacts with antigens via “immunotransmitters”, i.e. cytokines and/or hormones with central effects.1 All these data that have accumulated during the last few years have contributed to the vision of the immune system as “the sixth sense”.2 While there is certainly still more work needed to define the physiology of this concept in all details, strong evidence has been obtained that the immune-neuroendocrine dialogue is of relevance for the homeostasis of the immune response, as defects in the activation of the hypothalamo-pituitary-adrenal (HPA) axis by immune signals were found to be associated with and/or to predispose to spontaneously occurring3 and experimentally induced autoimmune diseases in animal models.4,5

Keywords

Parasympathetic Nervous System Cholinergic Innervation Sixth Sense Mitogen Reactivity Neuroendocrine Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.W. Cotman, R.E. Brinton, A. Galaburda, B. McEwen, and D. Schneider. “The Neuro-Immune-Endocrine Connection,” Raven Press, New York (1987).Google Scholar
  2. 2.
    J.E. Blalock, The immune system — our sixth sense, The Immunologist 2:8 (1994).Google Scholar
  3. 3.
    K. Schauenstein, R. Faessler, H. Dietrich, S. Schwarz, G. Kroemer, and G. Wick, Disturbed immune-endocrine communication in autoimmune disease. Lack of corticosterone response to immune signals in obese strain chickens with spontaneous autoimmune thyroiditis, J. Immunol. 139:1830 (1987).PubMedGoogle Scholar
  4. 4.
    E.M. Sternberg, J.M. Hill, G.P. Chrousos, T. Kamilaris, S.J. Listwak, P.W. Gold, and R.L. Wilder, Inflammatory mediator-induced hypothalamic-pituitary-adrenal axis activation is defective in streptococcal cell wall arthritis-susceptible Lewis rats, Proc. Natl. Acad. Sci. USA 86:4771 (1989).PubMedCrossRefGoogle Scholar
  5. 5.
    D. Mason, I. MacPhee, and F. Antoni, The role of the neuroendocrine system in determining genetic susceptibility to experimental allergic encephalomyelitis in the rat, Immunology 70:1 (1990).PubMedGoogle Scholar
  6. 6.
    S.E. Keller, S.J. Schleifer, and M.K. Demetrikopoulos, Stress-induced changes in immune function in animals: Hypothalamo-pituitary-adrenal influences, in: “Psychoneuroimmunology,” 2nd edition, R. Ader, D.L. Feiten, and N. Cohen, eds., Academic Press (1991).Google Scholar
  7. 7.
    I. Rinner, K. Schauenstein, H. Mangge, S. Porta, and R. Kvetnansky, Opposite effects of mild and severe stress on in vitro activation of rat peripheral blood lymphocytes, Brain Behav. Immun. 6:130 (1992).PubMedCrossRefGoogle Scholar
  8. 8.
    D. Hofer and K. Schauenstein, Enhanced stress sensitivity of an autoimmune response as compared to a simultaneous response against foreign antigen in mice, Abstract, Annual Meeting of the Austrian Society of Allergology and Immunology, Graz, Austria, November 1993, p. 17.Google Scholar
  9. 9.
    J.D. Naysmith, P.M.G. Ortega, and C.J. Elson, Rat erythrocyte-induced anti- erythrocyte autoantibody production and control in normal mice, Immunol. Rev. 55:55 (1981).PubMedCrossRefGoogle Scholar
  10. 10.
    D.L. Feiten, S.Y. Feiten, D.L. Bellinger, S.L. Carlson, K.D. Ackerman, K.S. Madden, J.A. Olschowski, and S. Livnat, Noradrenergic sympathetic neural interactions with the immune system: structure and function, Immunol. Rev. 100:225 (1987).CrossRefGoogle Scholar
  11. 11.
    M.M. Khan, P. Sansoni, E.D. Silverman, E.G. Engleman, and K.L. Melmon, Beta-adrenergic receptors on human suppressor, helper and cytolytic lymphocytes, Biochem. Pharm. 7:1137 (1986).CrossRefGoogle Scholar
  12. 12.
    S. Titinchi and B. Clark, Alpha2-adrenoceptors in human lymphocytes: direct characterization by (H) yohimbine binding, Biochm. Biophys. Res. Commun. 121:1 (1984).CrossRefGoogle Scholar
  13. 13.
    W. Korsatko, S. Porta, A. Sadjak, and S. Supanz, Implantation von Adrenalin-retard Tabletten zur Langzeitunzersuchung in Ratten, Pharmazie 37:565 (1982).PubMedGoogle Scholar
  14. 14.
    P. Felsner, D. Hofer, I. Rinner, H. Mangge, M. Gruber, W. Korsatko, and K. Schauenstein, Continuous in vivo treatment with catecholamines suppresses in vitro reactivity of rat peripheral blood T-lymphocytes via a-mediated mechanisms, J. Neuroimmunol 37:47 (1992).PubMedCrossRefGoogle Scholar
  15. 15.
    P. Felsner, D. Hofer, I. Rinner, W. Korsatko, and K. Schauenstein, In vivo immunosuppression by enhanced catecholamines in the rat model is due to activation of peripheral a2-receptors. J. Neuroimmunol. (Submitted for publication).Google Scholar
  16. 16.
    H.O. Besedovsky, A. Del Rey, E. Sorkin, M. Da Prada, and H.H. Keller, Immunoregulation mediated by the sympathetic nervous system, Cell. Immunol. 48:346 (1979).PubMedCrossRefGoogle Scholar
  17. 17.
    S. Porta, B. Rangentiner, I. Rinner, U. Ertl, A. Sadjak, J. Nauman, Long-term application of some catecholamines elevates levels of other catecholamines in rats, Exp. Path. 28:181 (1985).CrossRefGoogle Scholar
  18. 18.
    M. Heilig, M. Irwin, G. Iqbal, and E. Sercarz, Sympathetic regulation of T-helper cell function, Brain Behav. Immun. 7:154 (1993).PubMedCrossRefGoogle Scholar
  19. 19.
    K. Bulloch, A comparative study of the autonomous nervous system innervation of the thymus in the mouse and chicken, Int. I. Neurosci. 40:129 (1988).CrossRefGoogle Scholar
  20. 20.
    D.M. Nance, D.A. Hopkins, and D. Bieger, Re-investigation of the innervation of the thymus gland in mice and rats, Brain Behav. Immun. 1:134 (1987).PubMedCrossRefGoogle Scholar
  21. 21.
    S.Y. Feiten and D.L. Feiten, Innervation of lymphoid tissue, in: “Psychoneuroimmunology,” 2nd edition, R. Ader, D.L. Feiten, and N. Cohen, eds., Academic Press (1991).Google Scholar
  22. 22.
    W. Maslinski, Cholinergic receptors on lymphocytes, Brain Behav. Immun. 3:1 (1989).PubMedCrossRefGoogle Scholar
  23. 23.
    J. Szelenyi, P. Palldi-Haris, and S. Hollan, Changes in the cholinergic system due to mitogenic stimulation, Immunol. Lett. 16:49 (1987).PubMedCrossRefGoogle Scholar
  24. 24.
    G. Iliano, G.P.E. Tell, M.I. Segal, and P. Cuatrecasas, Guanosine 3, 5′-cyclic monophosphate and the action of insulin and acetylcholine, Proc. Natl. Acad. Sci. USA 70:2443 (1973).CrossRefGoogle Scholar
  25. 25.
    T.B. Strom, A.T. Sytkowski, C.B. Carpenter, and J.B. Merill, Cholinergic augmentation of lymphocyte mediated cytotoxicity. A study of the cholinergic receptor of cytotoxic T lymphocytes, Proc. Natl. Acad. Sci. USA 71:1330 (1974).PubMedCrossRefGoogle Scholar
  26. 26.
    A. Rossi, M.A. Tria, S. Baschieri, G. Doria, and D. Frasca, Cholinergic agonists selectively induce proliferative responses in the mature subpopulation of murine thymocytes, J. Neurosci. Res. 24:369 (1989).PubMedCrossRefGoogle Scholar
  27. 27.
    I. Rinner and K. Schauenstein, The parasympathetic nervous system takes part in the immuno-neuroendocrine dialogue, J. Neuroimmunol. 34:165 (1991).PubMedCrossRefGoogle Scholar
  28. 28.
    I. Rinner, K. Schauenstein, E. Skreiner, and M. Posch, Relationship between the parasympathetic nervous system and the immune system, Abstract No. 313, 1st International Congress ISNIM, Florence, Italy, May 23–26, 1990, p. 420.Google Scholar
  29. 29.
    F.A. Fonnum, Rapid radiochemical method for the determination of choline acetyltransferase, J. Neurochem. 24:407 (1975).PubMedCrossRefGoogle Scholar
  30. 30.
    I. Rinner and K. Schauenstein, Detection of choline-acetytransferase activity in lymphocytes, J. Neurosci. Res. 35:188 (1993).PubMedCrossRefGoogle Scholar
  31. 31.
    M. Badamchian, H. Damavandy, T. Radojcic, and K. Bulloch, Choline O-acetyltransferase (ChAT) and muscarinic receptors in the Balb/C mouse thymus, Abstract, Proc. Satellite meeting of the 8th International Congress of Immunology “Advances in Psychoneuroimmunology”, Budapest, August 1992, p. 3.Google Scholar
  32. 32.
    I. Rinner, T. Kukulansky, E. Skreiner, A. Globerson, M. Kasai, K. Hirokawa, and K. Schauenstein, Adrenergic and cholinergic regulation of apoptosis and differentiation of thymic lymphocytes, in: “In Vivo Immunology: Regulatory Processes During Lymphopoiesis and Immunopoiesis,” J. Bonniver, ed., Plenum Pub. Corp., NY, in press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Konrad Schauenstein
    • 1
  • Ingo Rinner
    • 1
  • Peter Felsner
    • 1
  • Dietmar Hofer
    • 1
  • Harald Mangge
    • 2
  • Elisabeth Skreiner
    • 1
  • Peter Liebmann
    • 1
  • Amiela Globerson
    • 3
  1. 1.Institute of General and Experimental PathologyUniversity of GrazAustria
  2. 2.Department of PediatricsUniversity of GrazAustria
  3. 3.Department of Cell BiologyThe Weizmann Institute of SciencesRehovotIsrael

Personalised recommendations