Skip to main content

The Cervical Sympathetic Trunk-Submandibular Gland Axis in the Regulation of Inflammatory Responses

  • Chapter
  • 64 Accesses

Part of the book series: Hans Selye Symposia on Neuroendocrinology and Stress ((HSSN,volume 3))

Abstract

Elaborate homeostatic mechanisms have been developed for regulating the main physiological variables of body temperature, heart rate, blood pressure, water balance and availability of nutrients. Major threats to an organism whether through a stress response or other insults such as infection (viral, fungal, bacterial) and noninfectious pathological causes (e.g. pancreatitis, ischemia, multiple trauma and tissue injury, haemorrhagic shock, immune-mediated organ dysfunction) elicit homeostatic responses in the major body systems; nervous, endocrine, immune, cardiovascular, respiratory, liver, kidneys and gastrointestinal tract.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.P. Cardinali, H.E. Romeo, Peripheral neuroendocrine interrelationships in the cervical region, NIPS 5:100 (1990).

    Google Scholar 

  2. H.E. Romeo, E. Spinedi, F. Vacas, F. Estivariz, D.P. Cardinali, Increase in adrenocortictropin release during wallerian degeneration of peripheral sympathetic neurons after superior cervical ganglionectomy of rats, Neuroendocrinal. 51:213 (1990).

    Article  CAS  Google Scholar 

  3. R. Boyer, L. Tapia-Arancibia, G. Alonso, S. Arancibia, Decrease of hypothalamic TRH levels but not plasmic TSH levels after ablation of submandibular salivary glands in the rat, J. Biol. Buccale 16:69 (1988).

    PubMed  CAS  Google Scholar 

  4. A. Miyake, K. Tasaka, S. Otsuka, H. Kohmura, H. Wakimoto, T. Aonot, Epidermal growth factorstimulates secretion of rat pituitary lutenizing hormone in vitro, Acta Endocrinol. 108:175 (1985).

    PubMed  CAS  Google Scholar 

  5. R. Boyer, F. Jame, S. Arancicia, Une fonction non exocrine de la glande sous-maxillaire, Annales d’Endocrinologie (Paris) 52:307 (1991).

    CAS  Google Scholar 

  6. R. Relkin, Effect of pinealectomy and constant light and darkness on thyrotropin level in pituitary and plasma of the rat, Neuroendocrinol 10:46 (1972).

    Article  CAS  Google Scholar 

  7. J. Vriend, P.M. Hinkle, K.M. Knigge, Evidence for TRH inhibitor in the pineal gland. Endocrinology 107:1791 (1980).

    Article  PubMed  CAS  Google Scholar 

  8. R. Levi-Montalcini, The nerve growth factor 35 years later, Science 286:1154 (1987).

    Article  Google Scholar 

  9. M.G. Spillantini, L. Aloe, E. Alleva, R. De Simone, M. Guedert, R. Levi-Montalcini, Nerve growth factor mRNA and protein increase in hypothalamus in a mouse model of aggression, Proc. Natl. Acad. Sci. USA 86:8555 (1989).

    Article  PubMed  CAS  Google Scholar 

  10. U. Wingren, T.H. Brown, B.M. Watkins, G.M. Larson, Delayed gastric ulcer healing after extirpation of submandibular glands is sex-dependent, Scand. I. Gastroenterol. 24:1102 (1989).

    Article  CAS  Google Scholar 

  11. B.L. Tepperman, B.D. Soper, Effect of sialadenectomy on ethanol-induced gastric mucosal damage in the rat: role of neutrophils, Can. J. Physiol. Pharmacol. 68:207 (1990).

    Article  PubMed  CAS  Google Scholar 

  12. M. Laato, J. Heino, V.-L. Kahari, J. Nhinikoski, B. Gerdin, Epidermal growth factor (EGF) prevents methylprednisolone-induced inhibition of wound healing, J. Surg. Res. 47:354 (1989).

    Article  PubMed  CAS  Google Scholar 

  13. Y. Kamei, O. Tsutsumi, Y. Kuwabara, Y. Taketani, Intrauterine growth retardation and fetal losses are caused by epidermal growth factor deficiency in mice. Am. J. Physiol. 264:R597 (1993).

    Google Scholar 

  14. Noguchi, S., Ohba, Y., and Oka, T., Effect of salivary epidermal growth factor on wound healing of tongue in mice. Am. J. Physiol. 260:E620 (1991).

    Google Scholar 

  15. Aloe, L., Alleva, E., Bohm, A., and Levi-Montalcini, R., Aggressive behaviour induces release of nerve growth factor from mouse salivary gland into the blood stream. Proc. Natl. Acad. Sci. USA 83:6184 (1986).

    Article  PubMed  CAS  Google Scholar 

  16. Poulsen, K., and Pedersen, E.B., Increase in plasma renin in aggressive mice originates from kidneys, submaxillary and other salivary glands, and bites. Hypertension 5:180 (1983).

    Article  PubMed  CAS  Google Scholar 

  17. Pedersen, E.B., and Poulsen, K., Aggression-provoked huge release of submaxillary mouse renin to saliva. Acta Endocrinol. 104:510 (1983).

    PubMed  CAS  Google Scholar 

  18. Hwang, D.L., Wang, S., Chen, R. C-R., and Lev-Ran, A., Trauma, especially of the submandibular glands, causes release of epidermal growth factor into bloodstream of mice. Reg. Peptides 34:133 (1991).

    Article  CAS  Google Scholar 

  19. Shimizu, M., Sato, J., Ishi, T., Kanada, T. and Shinoda, M., Androgen-induced production of colony-stimulating factor (CSF) and colony-inhibitory factor (CIF) in the submandibular gland in female mice. J. Pharmacobio-Dyn. 12: 352 (1989).

    Article  PubMed  CAS  Google Scholar 

  20. Kemp, A., Mellow, L. and Sabbadini, E., Inhibition of interleukin 1 activity by a factor in submandibular glands of rats. J. Immunol. 237:2245 (1986).

    Google Scholar 

  21. Amand, O., Tsuji, T., Nakamura, T., and Iseki, S., Expression of transforming growth factor β1 in the submandibular gland of the rat. J. Histochem. Cytochem. 39:1707 (1991).

    Article  Google Scholar 

  22. Miller, D.A., Lee, A., Pelton, R.W., Chen, E.Y., Moses, H.L., and Derynck, E.Y., Murine transforming growth factor β2 cDNA sequence and expression in adult tissues and embryos. Mol. Endocrinol. 3:1108 (1989).

    Article  PubMed  CAS  Google Scholar 

  23. Salido, E.C., Yen, P.H., Shapiro, L.J., Fisher, D.A. and Barajas, L., In situ hybridization of nerve growth factor mRNA in the mouse submandibular gland. Lab. Invest. 59:625 (1989).

    Google Scholar 

  24. Banks, B.E.C., Vernon, C.A., & Warner, J.A., Nerve growth factor has anti-inflammatory activity in the rat hind-paw oedema test. Neurosci. Lett. 47:41 (1984).

    Article  PubMed  CAS  Google Scholar 

  25. Sugiyama, K., Suzuki, Y., and Furuta, H., Histamine-release induced by 7S nerve-growth factor of mouse submandibular salivary glands. Arch. Oral Biol. 30:93 (1985).

    Article  PubMed  CAS  Google Scholar 

  26. Fu, Y-K., Arkins, S., Wang, B.S., and Kelley, K.W., A novel role of growth factor and insulin-like growth factor-1. Priming neutrophils for superoxide anion secretion. J. Immunol. 146:1602 (1991).

    PubMed  CAS  Google Scholar 

  27. Kannan, Y., Ushio, H., Koyama, H., Okada, M., Oikawa, M., Yoshihara, T., Kaneko, M. and Matsuda, H., 2.5S nerve growth factor enhances survival, phagocytosis, and superoxide production by murine neutrophils. Blood 77:1320 (1991).

    PubMed  CAS  Google Scholar 

  28. Gruber, D.F., O’Halloran, K.P., D. Alesandro, S., and Farese, A.M., Hypermetabolic priming of canine neutrophils by 7-S nerve growth factor. Am. J. Vet. Res. 51:921 (1990).

    PubMed  CAS  Google Scholar 

  29. Zimmerli, W., Huber, I., Bouma, B.N., and Lammle, B., Purified human plasma kallikrein does not stimulate but primes neutrophils for superoxide production. Thromb. Haemost. 29:1221 (1989).

    Google Scholar 

  30. Boyle, M.D., Lawman, M.J.P., Gee, A.P., and Young, M., Nerve growth factor: a chemotactic factor for polymorphonuclear leukocytes in vivo. J. Immunol. 134:564 (1985).

    PubMed  CAS  Google Scholar 

  31. Saito, K., Kato, C., and Teshigawara H., Saliva inhibits chemiluminescence response, phagocytosis and killing of Staphylococcus epidermidis by polymorphonuclear leukocytes. Infect. Immunity 56:2125 (1988).

    CAS  Google Scholar 

  32. Ramaswamy, K., Mathison, R., Carter, L., Kirk, D., Green, F., Davison, J.S., and Befus, D., Marked antiinflammatory effects of decentralization of the superior cervical ganglia. J. Exp. Med. 172:1819 (1990).

    Article  PubMed  CAS  Google Scholar 

  33. Mathison, R.D., Hogan, A., Helmer, D., Bauce, L., Woolner, J., Davison, J.S., Schultz, G., and Befus, D., Role for the submandibular gland in modulating pulmonary inflammation following induction of systemic anaphylaxis. Brain Behav. Immun. 6:117 (1992).

    Article  PubMed  CAS  Google Scholar 

  34. Carter, L., Ferrari, J.K., Davison, J.S., and Befus, D., Inhibition of neutrophil Chemotaxis and activation following decentralization of the superior cervical ganglia. J. Leukoc. Biol. 51:597 (1992).

    PubMed  CAS  Google Scholar 

  35. Mathison, R.D., Davison, J.S., De Sanctis, G., Green, F., and Befus, A.D., Decentralization of the superior cervical ganglia and the immediate hypersensitivity response. Proc. Soc. Exp. Biol. Med. 200:542 (1992).

    PubMed  CAS  Google Scholar 

  36. Mathison, R.D., Carter, L., Mowat, C., Bissonnette, E., Davison, J.S., and Befus, D., Temporal analysis of the anti-inflammatory effect of decentralization of the rat superior cervical ganglia. Am. J. Physiol. (in press) (1993).

    Google Scholar 

  37. Bissonnette, E.Y., Mathison, R.D., Carter, L., Davison, J.S., and Befus, A.D., Decentralization of the superior cervical ganglia inhibits mast cell mediated TNFa-dependent cytotoxicity. 1. Potential role of salivary glands. Brain Behav. Immun. (in press) (1993).

    Google Scholar 

  38. Mathison, R.D., Befus, D., and Davison, J.S., Removal of the submandibular glands increases the acute hypotensive response to endotoxin. Circ. Shock 39:52 (1993).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mathison, R., Davison, J.S., Befus, A.D. (1994). The Cervical Sympathetic Trunk-Submandibular Gland Axis in the Regulation of Inflammatory Responses. In: Berczi, I., Szélenyi, J. (eds) Advances in Psychoneuroimmunology. Hans Selye Symposia on Neuroendocrinology and Stress, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9104-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9104-4_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9106-8

  • Online ISBN: 978-1-4757-9104-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics