Advertisement

Single Sweep Analysis of Evoked and Event Related Potentials

  • Sergio Cerutti
  • Anna M. Bianchi
  • Diego Liberati

Abstract

Different approaches of single sweep analysis of evoked and event related potentials are presented. The autoregressive with eXogenous input (ARX) model is described with different applications in the study of dynamical changes of the brain responses and in artifact removal. A study of the modifications induced in the EEG by a sensory stimulation via ARX and AR models is also described. Finally, the wavelet transform is employed for the reconstruction of the single evoked response.

Keywords

Wavelet Transformation Confidence Ellipse Exogenous Input Artifact Removal Somatosensory Stimulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akaike, H., 1970, Statistical predictor identification, Ann. Inst. Stat. Math. 22: 203–247.MathSciNetMATHCrossRefGoogle Scholar
  2. Auerbach, V. H., Baird, H. W., and, Grover, W., 1977, The clinical EEG — A search for a buried message, IEEE Trans. BME 24 (4): 399–402.CrossRefGoogle Scholar
  3. Baselli, G.. Cerutti, S., Civardi, S., Malliani, A., Orsi, G., Pagani, M., and Rizzo, G., 1988, Parameter extraction from heart rate and blood pressure variability signals in dogs for the validation of a physiological model, Camp. Biol. Med. 18 1: 1–16.Google Scholar
  4. Barlow, J.S., 1979, Computerized clinical electroencephalography in perspective, IEEE Trans. BME 26: 377–391MathSciNetCrossRefGoogle Scholar
  5. Bartnik, E. A., Blinowska, K. J., and Durka, P. J., 1992, Single evoked potential reconstruction by means of wavelet transform, Biol. Cyhern. 67: 175–181.MATHCrossRefGoogle Scholar
  6. Cerutti, S., Liberati, D., and Mascellani, P., 1985, Parameter extraction in EEG processing during riskful neurosurgical operations, Signal Processing 9: 25–35.CrossRefGoogle Scholar
  7. Cerutti, S., Bersani, V., Carrara, A., and Liberati, D., 1986, Analysis of visual evoked potentials through Wiener filtering applied to a small number of sweeps. J. Biomed. Eng. 9: 3–12.CrossRefGoogle Scholar
  8. Cerutti, S., Baselli, G., and Liberati, D., 1987, Single sweep analysis of visual evoked potentials through a model of parametric identification, Biol. Cvbern. 56: 11–120.CrossRefGoogle Scholar
  9. Cerutti, S., Chiarenza, G., Liberati, D., Mascellani, P., Pavesi, G., 1988, A parametric method of identification of single-trial event-related potentials in the brain, IEEE Trans. Biomed. Eng. 35(9):701–711. Google Scholar
  10. Cerutti, S., Bianchi. A., Baselli, G., Civardi. S., Guzzetti, S., Malliani, A., Pagani. A., and Pagani, M., 1989, Compressed spectral array for the analysis of 24-h heart rate variability signal: enhancement and data reduction. Comp. and Biomed. Res. 22: 424–441.Google Scholar
  11. Chiarenza, G., Cerom, S., Liberati. D., Mascellani, P., Pavesi, G.. 1987, Autoregressive-exogenous filters for single-trial analysis of movement-related brain macropotentials in children, EEG and Clin..Veuropht°s. S40: 8–12.Google Scholar
  12. Chiarenza. G.A., Cerutti, S., Liberati. D.. 1994, Analysis of single trial movement-related brain macropotential. Inc.1 Psychophysiology 16:163-174.Google Scholar
  13. Gevins, A.S., 1984, Analysis of the electromagnetic signals of the human brain: milestones, obstacles, and goals, IEEE Trans. Blamed. Eng. 31: 833–850.CrossRefGoogle Scholar
  14. Gratton, G., Coles, M. G. H., and Donchin, E. A.. 1983, A new method for off-line removal of ocular artifacts. EEG Clin. Neurophys. 55: 468–484.CrossRefGoogle Scholar
  15. Isaksson, A., Wennberg, A, and Zetterberg, L. H., 1981. Computer analysis of LEG signals with parametric models, Proc. IEEE 69: 451–461.CrossRefGoogle Scholar
  16. Jansen, B. H., Bourne, J. R., and Ward J. W., 1981, Autoregressive estimation of short segment spectra for computerized EEG analysis, IEEE Trans. Biomed. Eng. 28: 630–638.CrossRefGoogle Scholar
  17. Kay, S. M., and Marple, S. L., 1981, Spectrum analysis: a modern perspective, Proc. IEEE 69 (1 I): 1380–1419.CrossRefGoogle Scholar
  18. Liberati, D., Cerutti, S., DiPonzio, E., Ventimiglia, V, and Zaninelli L., 1989, The implementation of an autoregressive model with exogenous input in a single sweep visual evoked potential analysis, J Biomed. Eng. 11: 285–282.CrossRefGoogle Scholar
  19. Liberati, D., Bertolini, L., and Colombo, D., 1991a. Parametric method for the detection of inter-and intra-sweep variability in VEP processing, Med. & Biol. Eng. & Comput. 29: 159–166.CrossRefGoogle Scholar
  20. Liberati, D., Bedarida, L., Brandazza. P., and Cerutti, S., 1991 b. A model for the cortico-cortical neural interaction in multisensory evoked potentials. IEEE Trans. Monica. Eng. 38 (9): 879-890.Google Scholar
  21. Liberati, D., DiCorrado, S., and Mandelli S., 1992, Topographic mapping of single-sweep evoked potentials in the brain, IEEE Trans. Biomed. Eng. 39 (9): 943–951.CrossRefGoogle Scholar
  22. Lopes da Silva, F. H., Pijn, J. P. M., and Boerijinga P.:, 1990. Interdependence of EEG signals: linear vs. non-linear associations and the significance of time delays and phase shifts. Brain Topography, vol. 2, 1 /2: 9–18, 1990.Google Scholar
  23. Magni, R., Giunti, S., Bianchi, A., Reni, G., Bandello, F., Durante, A., Cerutti, S.. and Brancato, R., 1994, Single sweep analysis using an autoregressive with exogenous input (ARX) model. Doc. Ophial 86: 95–104.CrossRefGoogle Scholar
  24. McGillem, C. D., and Aunon, J. I., 1977, Measurement of signal components in single visually evoked brain potentials, IEEE Trans. Biomed. Eng., 24: 232–241.CrossRefGoogle Scholar
  25. Mocks, J., Gasser, T., and Dinh Tuan, P., 1984, Variability of single visual evoked potentials evaluated by two statistical tests, Electroenphalogr. & Clin. Neurophy.siol. 57: 571–580.CrossRefGoogle Scholar
  26. Moser, J. M. and Aunon, J. I.. 1986, Classification and detection of single evoked brain potentials using time-frequency amplitude features, IEEE Trans. Biomed. Eng. 33: 1096–1106.CrossRefGoogle Scholar
  27. Polizzi, A., Grillo, N., Corallo, G., Rovida, S., Cataldi, L., and Zingirian, 1995, M.: Macular function testing the screening of diabetic retinopathy Boll. Oeul. 64: 997.Google Scholar
  28. Rioul,O., and Vetterli, M., 1991, Wavelets and signal processing, IEEE SP Mag. Oct.: 14–38.Google Scholar
  29. Shipley, T., 1989, Intersensory evoked brain potentials and intersensory psychophysics: a critical overview, IEEE EMBS Il th Int. Conf.Google Scholar
  30. von Spreckelsen, M. and Bromm, B., 1988, Estimation of single-evoked cerebral potentials by means of parametric modeling and Kalman filtering, IEEE Trans. Biomed. Eng. 35:691–700.Google Scholar
  31. Westerkamp, J. J. and Aunon, J. I., 1987, Optimum multielectrode a posteriori estimates of single-response evoked potentials, IEEE Trans. Biomed. Eng. 34: 13–22.CrossRefGoogle Scholar
  32. Yu, K. B. and McGillem, C. D., 1983, Optimum filters for estimating evoked potential waveforms, IEEE Trans. Biomed. Eng. 30: 730–737.CrossRefGoogle Scholar
  33. Zetterberg, L.H., 1979, Estimation parameters for the linear difference equation with application to EEG analysis, Math. Bioscience 5: 227–275.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Sergio Cerutti
    • 1
  • Anna M. Bianchi
    • 2
  • Diego Liberati
    • 3
  1. 1.Department of Biomedical EngineeringPolytechnic UniversityMilano
  2. 2.Laboratory of Biomedical EngineeringS. Raffaele FoundationMilano
  3. 3.Department of Electronic Engineering Polytechnic UniversityCNR System Theory CentreMilano

Personalised recommendations